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9 The strong coupling αs

9.1 Introduction

The strong coupling ḡ(µ) defined at scale µ, plays a key role in the understanding of QCD
and in its application for collider physics. For example, the parametric uncertainty from αs is
one of the dominant sources of uncertainty in the Standard Model prediction for the H → bb̄
partial width, and the largest source of uncertainty for H → gg. Thus higher precision
determinations of αs are needed to maximize the potential of experimental measurements at
the LHC, and for high-precision Higgs studies at future colliders [1–3]. The value of αs also
yields one of the essential boundary conditions for completions of the standard model at high
energies.

In order to determine the running coupling at scale µ

αs(µ) =
ḡ2(µ)

4π
, (230)

we should first “measure” a short-distance quantity Q at scale µ either experimentally or by
lattice calculations and then match it with a perturbative expansion in terms of a running
coupling, conventionally taken as αMS(µ),

Q(µ) = c1αMS(µ) + c2αMS(µ)
2 + · · · . (231)

The essential difference between continuum determinations of αs and lattice determinations
is the origin of the values of Q in Eq. (231).

The basis of continuum determinations are experimentally measurable cross sections from
which Q is defined. These cross sections have to be sufficiently inclusive and at sufficiently
high scales such that perturbation theory can be applied. Often hadronization corrections
have to be used to connect the observed hadronic cross sections to the perturbative ones.
Experimental data at high µ, where perturbation theory is progressively more precise, usually
have increasing experimental errors, and it is not easy to find processes which allow one to
follow the µ dependence of a single Q(µ) over a range where αs(µ) changes significantly and
precision is maintained.

In contrast, in lattice gauge theory, one can design Q(µ) as Euclidean short-distance
quantities which are not directly related to experimental observables. This allows us to follow
the µ dependence until the perturbative regime is reached and nonperturbative “corrections”
are negligible. The only experimental input for lattice computations of αs is the hadron
spectrum which fixes the overall energy scale of the theory and the quark masses. Therefore
experimental errors are completely negligible and issues such as hadronization do not occur.
We can construct many short-distance quantities that are easy to calculate nonperturbatively
in lattice simulations with small statistical uncertainties. We can also simulate at parameter
values that do not exist in nature (for example with unphysical quark masses between bottom
and charm) to help control systematic uncertainties. These features mean that precise results
for αs can be achieved with lattice gauge theory computations. Further, as in the continuum,
the different methods available to determine αs in lattice calculations with different associated
systematic uncertainties enable valuable cross-checks. Practical limitations are discussed in
the next section, but a simple one is worth mentioning here. Experimental results (and
therefore the continuum determinations) of course have all quarks present, while in lattice
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gauge theories only the light ones are included and one then is forced to use the matching at
thresholds, as discussed in the following subsection.

It is important to keep in mind that the dominant source of uncertainty in most present
day lattice-QCD calculations of αs are from the truncation of continuum/lattice perturba-
tion theory and from discretization errors. Perturbative truncation errors are of a different
nature than most other lattice (or continuum) systematics, in that they often cannot easily
be estimated from studying the data itself. Further, the size of higher-order coefficients in
the perturbative series can sometimes turn out to be larger than naive expectations based on
power counting from the behaviour of lower-order terms.

The various phenomenological approaches to determining the running coupling, α
(5)

MS
(MZ)

are summarized by the Particle Data Group [4]. The PDG review lists 4 categories of phe-
nomenological results used to obtain the running coupling using hadronic τ decays, hadronic
final states of e+e− annihilation, deep inelastic lepton–nucleon scattering and electroweak
precision data. Excluding lattice results, the PDG quotes a weighted average of

α
(5)

MS
(MZ) = 0.1175(17) , (232)

compared to α
(5)

MS
(MZ) = 0.1183(12) of the previous review [5]. For a general overview of the

various phenomenological and lattice approaches see e.g. Ref. [6]. We note that perturbative
truncation errors are also the dominant source of uncertainty in several of the phenomenolog-
ical determinations of αs. In particular, the extraction of αs from τ data, which is the most
precise and has the largest impact on the nonlattice average in Eq. (232) is especially sensitive
to the treatment of higher-order perturbative terms. This is important to keep in mind when

comparing our chosen range for α
(5)

MS
(MZ) from lattice determinations in Eq. (276) with the

nonlattice average from the PDG.

9.1.1 Scheme and scale dependence of αs and ΛQCD

Despite the fact that the notion of the QCD coupling is initially a perturbative concept, the
associated Λ parameter is nonperturbatively defined

Λ ≡ µ (b0ḡ
2(µ))−b1/(2b20)e−1/(2b0ḡ2(µ)) exp

[

−
∫ ḡ(µ)

0
dx

(

1

β(x)
+

1

b0x3
− b1

b20x

)

]

, (233)

where β is the full renormalization group function in the scheme which defines ḡ, and b0 and
b1 are the first two scheme-independent coefficients of the perturbative expansion

β(x) ∼ −b0x
3 − b1x

5 + . . . , (234)

with

b0 =
1

(4π)2

(

11− 2

3
Nf

)

, b1 =
1

(4π)4

(

102− 38

3
Nf

)

. (235)

Thus the Λ parameter is renormalization-scheme-dependent but in an exactly computable
way, and lattice gauge theory is an ideal method to relate it to the low-energy properties of
QCD.
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The change in the coupling from one scheme, S, to another (taken here to be the MS
scheme) is perturbative,

g2
MS

(µ) = g2S(µ)(1 + c(1)g g2S(µ) + . . .) , (236)

where c
(i)
g are the finite renormalization coefficients. The scale µ must be taken high enough

for the error in keeping only the first few terms in the expansion to be small. On the other
hand, the conversion to the Λ parameter in the MS scheme is given exactly by

ΛMS = ΛS exp
[

c(1)g /(2b0)
]

. (237)

By convention αMS is usually quoted at a scale µ = MZ where the appropriate effective

coupling is the one in the 5-flavour theory: α
(5)

MS
(MZ). In order to obtain it from a result with

fewer flavours, one connects effective theories with different number of flavours as discussed by
Bernreuther and Wetzel [7]. For example one considers the MS scheme, matches the 3-flavour
theory to the 4-flavour theory at a scale given by the charm-quark mass, runs with the 4-loop
β-function of the 4-flavour theory to a scale given by the b-quark mass and there matches
to the 5-flavour theory, after which one runs up to µ = MZ . For the matching relation at a
given quark threshold we use the mass m⋆ which satisfies m⋆ = mMS(m⋆), where m is the
running mass (analogous to the running coupling). Then

ḡ2Nf−1(m⋆) = ḡ2Nf
(m⋆)× [1 + t2 ḡ

4
Nf

(m⋆) + t3 ḡ
6
Nf

(m⋆) + . . .] (238)

with [8]

t2 =
1

(4π2)2
11

72
(239)

t3 =
1

(4π2)3

[

−82043

27648
ζ3 +

564731

124416
− 2633

31104
(Nf − 1)

]

(240)

(where ζ3 is the Riemann zeta-function) provides the matching at the thresholds in the MS
scheme. While t2, t3 are numerically small coefficients, the charm threshold scale is also
relatively low and so there are nonperturbative uncertainties in the matching procedure,
which are difficult to estimate but which we assume here to be negligible. Obviously there is
no perturbative matching formula across the strange “threshold”; here matching is entirely
nonperturbative. Model dependent extrapolations of ḡ2Nf

from Nf = 0, 2 to Nf = 3 were
done in the early days of lattice gauge theory. We will include these in our listings of results
but not in our estimates, since such extrapolations are based on untestable assumptions.

9.1.2 Overview of the review of αs

We begin by explaining lattice-specific difficulties in Sec. 9.2 and the FLAG criteria designed
to assess whether the associated systematic uncertainties can be controlled and estimated in
a reasonable manner. We then discuss, in Sec. 9.3 – Sec. 9.8, the various lattice approaches.
For completeness, we present results from calculations with Nf = 0, 2, 3, and 4 flavours.

Finally, in Sec. 9.9, we present averages together with our best estimates for α
(5)

MS
. These are

determined from 3- and 4-flavour QCD simulations. The earlier Nf = 0, 2 works obtained
results for Nf = 3 by extrapolation in Nf . Because this is not a theoretically controlled
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procedure, we do not include these results in our averages. For the Λ parameter, we also
give results for other number of flavours, including Nf = 0. Even though the latter numbers
should not be used for phenomenology, they represent valuable nonperturbative information
concerning field theories with variable numbers of quarks.

9.1.3 Differences compared to the FLAG 13 report

For the benefit of the readers who are familiar with our previous report, we list here where
changes and additions can be found which go beyond slight improvements of the presentation.

Our criteria are unchanged as far as the explicit ratings on renormalization scale, per-
turbative behaviour and continuum extrapolation are concerned. However, where we discuss
the criteria, we emphasize that it is also important whether finite-size effects and topology
sampling are under control. In a few cases, this influences our decision on which computations
enter our ranges and averages.

New computations which are reviewed here are

Karbstein 14 [9] and Bazavov 14 [10] based on the static-quark potential (Sec. 9.4),

FlowQCD 15 [11] based on a tadpole-improved bare coupling (Sec. 9.6),

HPQCD 14A [12] based on heavy-quark current two-point functions (Sec. 9.7).

They influence the final ranges marginally.

9.2 Discussion of criteria for computations entering the averages

As in the PDG review, we only use calculations of αs published in peer-reviewed journals, and
that use NNLO or higher-order perturbative expansions, to obtain our final range in Sec. 9.9.
We also, however, introduce further criteria designed to assess the ability to control important
systematics which we describe here. Some of these criteria, e.g. that for the continuum ex-
trapolation, are associated with lattice-specific systematics and have no continuum analogue.
Other criteria, e.g. that for the renormalization scale, could in principle be applied to nonlat-
tice determinations. Expecting that lattice calculations will continue to improve significantly
in the near future, our goal in reviewing the state of the art here is to be conservative and
avoid prematurely choosing an overly small range.

In lattice calculations, we generally take Q to be some combination of physical amplitudes
or Euclidean correlation functions which are free from UV and IR divergences and have a
well-defined continuum limit. Examples include the force between static quarks and 2-point
functions of quark bilinear currents.

In comparison to values of observables Q determined experimentally, those from lattice
calculations require two more steps. The first step concerns setting the scale µ in GeV,
where one needs to use some experimentally measurable low-energy scale as input. Ideally
one employs a hadron mass. Alternatively convenient intermediate scales such as

√
t0, w0,

r0, r1, [13–16] can be used if their relation to an experimental dimensionful observable is
established. The low-energy scale needs to be computed at the same bare parameters where
Q is determined, at least as long as one does not use the step-scaling method (see below).
This induces a practical difficulty given present computing resources. In the determination of
the low-energy reference scale the volume needs to be large enough to avoid finite-size effects.
On the other hand, in order for the perturbative expansion of Eq. (231) to be reliable, one
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has to reach sufficiently high values of µ, i.e. short enough distances. To avoid uncontrollable
discretization effects the lattice spacing a has to be accordingly small. This means

L ≫ hadron size ∼ Λ−1
QCD and 1/a ≫ µ , (241)

(where L is the box size) and therefore

L/a ≫ µ/ΛQCD . (242)

The currently available computer power, however, limits L/a, typically to L/a = 20 − 64.
Unless one accepts compromises in controlling discretization errors or finite-size effects, this
means one needs to set the scale µ according to

µ ≪ L/a× ΛQCD ∼ 5− 20GeV . (243)

Therefore, µ can be 1 − 3GeV at most. This raises the concern whether the asymptotic
perturbative expansion truncated at 1-loop, 2-loop, or 3-loop in Eq. (231) is sufficiently ac-
curate. There is a finite-size scaling method, usually called step-scaling method, which solves
this problem by identifying µ = 1/L in the definition of Q(µ), see Sec. 9.3.

For the second step after setting the scale µ in physical units (GeV), one should compute
Q on the lattice, Qlat(a, µ) for several lattice spacings and take the continuum limit to obtain
the left hand side of Eq. (231) as

Q(µ) ≡ lim
a→0

Qlat(a, µ) with µ fixed . (244)

This is necessary to remove the discretization error.
Here it is assumed that the quantity Q has a continuum limit, which is regularization-

independent up to discretization errors. The method discussed in Sec. 9.6, which is based on
the perturbative expansion of a lattice-regulated, divergent short-distance quantity Wlat(a)
differs in this respect and must be treated separately.

In summary, a controlled determination of αs needs to satisfy the following:

1. The determination of αs is based on a comparison of a short-distance quantity Q at scale
µ with a well–defined continuum limit without UV and IR divergences to a perturbative
expansion formula in Eq. (231).

2. The scale µ is large enough so that the perturbative expansion in Eq. (231) is precise
to the order at which it is truncated, i.e. it has good asymptotic convergence.

3. If Q is defined by physical quantities in infinite volume, one needs to satisfy Eq. (242).

Nonuniversal quantities need a separate discussion, see Sec. 9.6.

Conditions 2. and 3. give approximate lower and upper bounds for µ respectively. It is
important to see whether there is a window to satisfy 2. and 3. at the same time. If it exists,
it remains to examine whether a particular lattice calculation is done inside the window or
not.

Obviously, an important issue for the reliability of a calculation is whether the scale µ
that can be reached lies in a regime where perturbation theory can be applied with confi-
dence. However, the value of µ does not provide an unambiguous criterion. For instance,
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the Schrödinger Functional, or SF-coupling (Sec. 9.3) is conventionally taken at the scale
µ = 1/L, but one could also choose µ = 2/L. Instead of µ we therefore define an effective
αeff . For schemes such as SF (see Sec. 9.3) or qq (see Sec. 9.4) this is directly the coupling
of the scheme. For other schemes such as the vacuum polarization we use the perturbative
expansion Eq. (231) for the observable Q to define

αeff = Q/c1 . (245)

If there is an αs-independent term it should first be subtracted. Note that this is nothing but
defining an effective, regularization-independent coupling, a physical renormalization scheme.

Let us now comment further on the use of the perturbative series. Since it is only an
asymptotic expansion, the remainder Rn(Q) = Q − ∑

i≤n ciα
i
s of a truncated perturbative

expression Q ∼ ∑

i≤n ciα
i
s cannot just be estimated as a perturbative error k αn+1

s . The error
is nonperturbative. Often one speaks of “nonperturbative contributions”, but nonperturbative
and perturbative cannot be strictly separated due to the asymptotic nature of the series (see
e.g. Ref. [17]).

Still, we do have some general ideas concerning the size of nonperturbative effects. The
known ones such as instantons or renormalons decay for large µ like inverse powers of µ and
are thus roughly of the form

exp(−γ/αs) , (246)

with some positive constant γ. Thus we have, loosely speaking,

Q = c1αs + c2α
2
s + . . .+ cnα

n
s +O(αn+1

s ) +O(exp(−γ/αs)) . (247)

For small αs, the exp(−γ/αs) is negligible. Similarly the perturbative estimate for the mag-
nitude of relative errors in Eq. (247) is small; as an illustration for n = 3 and αs = 0.2 the
relative error is ∼ 0.8% (assuming coefficients |cn+1/c1| ∼ 1).

For larger values of αs nonperturbative effects can become significant in Eq. (247). An
instructive example comes from the values obtained from τ decays, for which αs ≈ 0.3.
Here, different applications of perturbation theory (fixed order, FOPT, and contour improved,
CIPT) each look reasonably asymptotically convergent but the difference does not seem to
decrease much with the order (see, e.g., the contribution of Pich in Ref. [6]). In addition
nonperturbative terms in the spectral function may be nonnegligible even after the integration
up to mτ (see, e.g., Ref. [18], Golterman in Ref. [6]). All of this is because αs is not really
small.

Since the size of the nonperturbative effects is very hard to estimate one should try to
avoid such regions of the coupling. In a fully controlled computation one would like to verify
the perturbative behaviour by changing αs over a significant range instead of estimating the
errors as ∼ αn+1

s . Some computations try to take nonperturbative power ‘corrections’ to the
perturbative series into account by including such terms in a fit to the µ dependence. We
note that this is a delicate procedure, both because the separation of nonperturbative and
perturbative is theoretically not well defined and because in practice a term like, e.g., αs(µ)

3

is hard to distinguish from a 1/µ2 term when the µ-range is restricted and statistical and
systematic errors are present. We consider it safer to restrict the fit range to the region where
the power corrections are negligible compared to the estimated perturbative error.

The above considerations lead us to the following special criteria for the determination of
αs.
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• Renormalization scale

⋆ all points relevant in the analysis have αeff < 0.2

◦ all points have αeff < 0.4 and at least one αeff ≤ 0.25

¥ otherwise

• Perturbative behaviour

⋆ verified over a range of a factor 4 change in αnl
eff without power corrections or

alternatively αnl
eff = 0.01 is reached

◦ agreement with perturbation theory over a range of a factor 2.25 in αnl
eff possibly

fitting with power corrections or alternatively αnl
eff = 0.02 is reached

¥ otherwise

Here nl is the loop order to which the connection of αeff to the MS scheme is known.
The β-function of αeff is then known to nl + 1 loop order.1

• Continuum extrapolation

At a reference point of αeff = 0.3 (or less) we require

⋆ three lattice spacings with µa < 1/2 and full O(a) improvement,
or three lattice spacings with µa ≤ 1/4 and 2-loop O(a) improvement,
or µa ≤ 1/8 and 1-loop O(a) improvement

◦ three lattice spacings with µa < 1.5 reaching down to µa = 1 and full O(a)
improvement,
or three lattice spacings with µa ≤ 1/4 and 1-loop O(a) improvement

¥ otherwise

• Finite-size effects

These are a less serious issue for the determination of αs since one looks at short-
distance observables where such effects are expected to be suppressed. We therefore
have no special criterion in our tables, but do check that volumes are not too small and
in particular the scale is determined in large enough volume.2 Remarks are added in
the text when appropriate.

• Topology sampling

In principle a good way to improve the quality of determinations of αs is to push
to very small lattice spacings thus enabling large µ. It is known that the sampling

1Once one is in the perturbative region with αeff , the error in extracting the Λ parameter due to the
truncation of perturbation theory scales like αnl

eff , as seen e.g. in Eq. (233). In order to well detect/control
such corrections, one needs to change the correction term significantly; we require a factor of four for a ⋆

and a factor 2.25 for a ◦. In comparison to FLAG 13, where nl = 2 was taken as the default, we have made
the nl dependence explicit and list it in Tabs. ?? – ??. An exception to the above is the situation where the
correction terms are small anyway, i.e. α

nl

eff ≈ 0.02 is reached.
2 Note also that the determination of the scale does not need to be very precise, since using the lowest-order

β-function shows that a 3% error in the scale determination corresponds to a ∼ 0.5% error in αs(MZ). So as
long as systematic errors from chiral extrapolation and finite-volume effects are below 3% we do not need to
be concerned about those. This covers most cases.
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of field space becomes very difficult for the HMC algorithm when the lattice spacing
is small and one has the standard periodic boundary conditions. In practice, for all
known discretizations the topological charge slows down dramatically for a ≈ 0.05 fm
and smaller [19–25]. Open boundary conditions solve the problem [26] but are rarely
used. Since the effect of the freezing is generally not known, we also do need to pay
attention to this issue. Remarks are added in the text when appropriate.

We assume that quark-mass effects of light quarks (including strange) are negligible in
the effective coupling itself where large, perturbative, µ is considered.

We also need to specify what is meant by µ. Here are our choices:

Schrödinger Functional : µ = 1/L ,

heavy quark-antiquark potential : µ = 2/r ,

observables in momentum space : µ = q ,

moments of heavy-quark currents : µ = 2m̄h (248)

where q is the magnitude of the momentum and m̄h the heavy-quark mass. We note again
that the above criteria cannot be applied when regularization dependent quantities Wlat(a)
are used instead of O(µ). These cases are specifically discussed in Sec. 9.6.

A popular scale choice is the intermediate r0 scale, although one should also bear in
mind that its determination from physical observables has also to be taken into account.
The phenomenological value of r0 was originally determined as r0 ≈ 0.49 fm through po-
tential models describing quarkonia [15]. Recent determinations from 2-flavour QCD are
r0 = 0.420(14) − 0.450(14) fm by the ETM collaboration [27, 28], using as input fπ and fK
and carrying out various continuum extrapolations. On the other hand, the ALPHA collabo-
ration [29] determined r0 = 0.503(10) fm with input from fK , and the QCDSF Collaboration
[30] cites 0.501(10)(11) fm from the mass of the nucleon (no continuum limit). Recent de-
terminations from 3-flavour QCD are consistent with r1 = 0.313(3) fm and r0 = 0.472(5) fm
[31–33]. Due to the uncertainty in these estimates, and as many results are based directly
on r0 to set the scale, we shall often give both the dimensionless number r0ΛMS, as well as
ΛMS. In the cases where no physical r0 scale is given in the original papers or we convert to
the r0 scale, we use the value r0 = 0.472 fm. In case r1ΛMS is given in the publications, we
use r0/r1 = 1.508 [33] to convert, neglecting the error on this ratio. In some, mostly early,
computations the string tension,

√
σ was used. We convert to r0 using r20σ = 1.65 − π/12,

which has been shown to be an excellent approximation in the relevant pure gauge theory
[34, 35]. The new scales t0, w0 based on the Wilson flow are very attractive alternatives to r0
but have not yet been used as much and their discretization errors are still under discussion
[36–39]. We remain with r0 as our main reference scale for now.

The attentive reader will have noticed that bounds such as µa < 1.5 or at least one value of
αeff ≤ 0.25 which we require for a ◦ are not very stringent. There is a considerable difference
between ◦ and ⋆. We have chosen the above bounds, unchanged as compared to FLAG 13,
since not too many computations would satisfy more stringent ones at present. Nevertheless,
we believe that the ◦ criteria already give reasonable bases for estimates of systematic errors.
In the future, we expect that we will be able to tighten our criteria for inclusion in the average,
and that many more computations will reach the present ⋆ rating in one or more categories.

In principle one should also account for electro-weak radiative corrections. However, both
in the determination of αs at intermediate scales µ and in the running to high scales, we
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expect electro-weak effects to be much smaller than the presently reached precision. Such
effects are therefore not further discussed.

9.3 αs from the Schrödinger Functional

9.3.1 General considerations

The method of step-scaling functions avoids the scale problem, Eq. (241). It is in principle
independent of the particular boundary conditions used and was first developed with periodic
boundary conditions in a two-dimensional model [40]. However, at present most applications
in QCD use Schrödinger functional boundary conditions [41, 42]. An important reason is that
these boundary conditions avoid zero modes for the quark fields and quartic modes [43] in the
perturbative expansion in the gauge fields. Furthermore the corresponding renormalization
scheme is well studied in perturbation theory [44–46] with the 3-loop β-function and 2-loop
cutoff effects (for the standard Wilson regularization) known.

Let us first briefly review the step-scaling strategy. The essential idea is to split the deter-
mination of the running coupling at large µ and of a hadronic scale into two lattice calculations
and connect them by ‘step scaling’. In the former part, we determine the running coupling
constant in a finite-volume scheme, in practice a ‘Schrödinger Functional (SF) scheme’ in
which the renormalization scale is set by the inverse lattice size µ = 1/L. In this calculation,
one takes a high renormalization scale while keeping the lattice spacing sufficiently small as

µ ≡ 1/L ∼ 10 . . . 100GeV , a/L ≪ 1 . (249)

In the latter part, one chooses a certain ḡ2max = ḡ2(1/Lmax), typically such that Lmax is
around 0.5 fm. With a common discretization, one then determines Lmax/a and (in a large
volume L ≥ 2−3 fm) a hadronic scale such as a hadron mass,

√
t0/a or r0/a at the same bare

parameters. In this way one gets numbers for Lmax/r0 and by changing the lattice spacing a
carries out a continuum limit extrapolation of that ratio.

In order to connect ḡ2(1/Lmax) to ḡ2(µ) at high µ, one determines the change of the
coupling in the continuum limit when the scale changes from L to L/2, starting from L = Lmax

and arriving at µ = 2k/Lmax. This part of the strategy is called step scaling. Combining
these results yields ḡ2(µ) at µ = 2k r0

Lmax
r−1
0 , where r0 stands for the particular chosen hadronic

scale.
In order to have a perturbatively well-defined scheme, the SF scheme uses Dirichlet bound-

ary condition at time t = 0 and t = T . These break translation invariance and permit O(a)
counter terms at the boundary through quantum corrections. Therefore, the leading dis-
cretization error is O(a). Improving the lattice action is achieved by adding counter terms at
the boundaries whose coefficients are denoted as ct, c̃t. In practice, these coefficients are com-
puted with 1-loop or 2-loop perturbative accuracy. A better precision in this step yields a bet-
ter control over discretization errors, which is important, as can be seen, e.g., in Refs. [34, 47].

The finite c
(i)
g , Eq. (236), are known for i = 1, 2 [45, 46].

Also computations with Dirichlet boundary conditions do in principle suffer from the
insufficient change of topology in the HMC algorithm at small lattice spacing. However, in
a small volume the weight of nonzero charge sectors in the path integral is exponentially
suppressed [48] 3 and one practically should not sample any nontrivial topology. Considering

3We simplify here and assume that the classical solution associated with the used boundary conditions has
charge zero. In practice this is the case.
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the suppression quantitatively Ref. [49] finds a strong suppression below L ≈ 0.8 fm. Therefore
the lack of topology change of the HMC is not a real issue in the computations discussed here.
A mix of Dirichlet and open boundary conditions is expected to remove this worry [50] and
may be considered in the future.

9.3.2 Discussion of computations

In Tab. 44 we give results from various determinations of the Λ parameter. For a clear
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scale ΛMS[MeV] r0ΛMS

ALPHA 10A [51] 4 A ⋆ ⋆ ⋆ only running of αs in Fig. 4
Perez 10 [52] 4 P ⋆ ⋆ ◦ only step-scaling function in Fig. 4

PACS-CS 09A [53] 2+1 A ⋆ ⋆ ◦ mρ 371(13)(8)(+0
−27)

# 0.888(30)(18)(+0
−65)

†

A ⋆ ⋆ ◦ mρ 345(59)## 0.824(141)†

ALPHA 12∗ [29] 2 A ⋆ ⋆ ⋆ fK 310(20) 0.789(52)

ALPHA 04 [54] 2 A ¥ ⋆ ⋆ r0 = 0.5 fm§ 245(16)(16)§ 0.62(2)(2)§

ALPHA 01A [55] 2 A ⋆ ⋆ ⋆ only running of αs in Fig. 5

CP-PACS 04& [47] 0 A ⋆ ⋆ ◦ only tables of g2SF
ALPHA 98†† [56] 0 A ⋆ ⋆ ◦ r0 = 0.5fm 238(19) 0.602(48)

Lüscher 93 [44] 0 A ⋆ ◦ ◦ r0 = 0.5fm 233(23) 0.590(60)§§

# Result with a constant (in a) continuum extrapolation of the combination Lmaxmρ.
† In conversion to r0ΛMS, r0 is taken to be 0.472 fm.

## Result with a linear continuum extrapolation in a of the combination Lmaxmρ.
∗ Supersedes ALPHA 04.
§ The Nf = 2 results were based on values for r0/a which have later been found to be too small by [29].

The effect will be of the order of 10–15%, presumably an increase in Λr0. We have taken this into
account by a ¥ in the renormalization scale.

& This investigation was a precursor for PACS-CS 09A and confirmed two step-scaling functions as well
as the scale setting of ALPHA 98.

†† Uses data of Lüscher 93 and therefore supersedes it.
§§ Converted from αMS(37r

−1
0 ) = 0.1108(25).

Table 44: Results for the Λ parameter from computations using step scaling of the SF-
coupling. Entries without values for Λ computed the running and established perturbative
behaviour at large µ.

assessment of the Nf dependence, the last column also shows results that refer to a common
hadronic scale, r0. As discussed above, the renormalization scale can be chosen large enough
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such that αs < 0.2 and the perturbative behaviour can be verified. Consequently only ⋆ is
present for these criteria except for early work where the nl = 2 loop connection to MS was
not yet known. With dynamical fermions, results for the step-scaling functions are always
available for at least a/L = µa = 1/4, 1/6, 1/8. All calculations have a nonperturbativelyO(a)
improved action in the bulk. For the discussed boundary O(a) terms this is not so. In most
recent calculations 2-loop O(a) improvement is employed together with at least three lattice
spacings.4 This means a ⋆ for the continuum extrapolation. In the other contributions only
1-loop ct was available and we arrive at ◦. We note that the discretization errors in the step-
scaling functions are usually found to be very small, at the percent level or below. However,
the overall desired precision is very high as well, and the results in CP-PACS 04 [47] show
that discretization errors at the below percent level cannot be taken for granted. In particular
with staggered fermions (unimproved except for boundary terms) few percent effects are seen
in Perez 10 [52].

In the work by PACS-CS 09A [53], the continuum extrapolation in the scale setting
is performed using a constant function in a and with a linear function. Potentially the
former leaves a considerable residual discretization error. We here use, as discussed with the
collaboration, the continuum extrapolation linear in a, as given in the second line of PACS-CS
09A [53] results in Tab. 44.

A single computation, PACS-CS 09A [53], quotes also αMS(MZ). We take the linear
continuum extrapolation as discussed above:

α
(5)

MS
(MZ) = 0.118(3) , (250)

where the conversion from a 3-flavour result to 5-flavours was done perturbatively (see
Sec. 9.2). Other results do not have a sufficient number of quark flavours (ALPHA 10A
[51], Perez 10 [52]) or do not yet contain the conversion of the scale to physical units. Thus

no value for α
(5)

MS
(MZ) is quoted.

More results for α
(5)

MS
(MZ) using step-scaling functions can be expected soon. Their pre-

cision is likely to be much better than what we were able to report on here. A major reason
is the use of the gradient flow [13] in definitions of finite volume schemes [57, 58].

9.4 αs from the potential at short distances

9.4.1 General considerations

The basic method was introduced in Ref. [59] and developed in Ref. [60]. The force or potential
between an infinitely massive quark and antiquark pair defines an effective coupling constant
via

F (r) =
dV (r)

dr
= CF

αqq(r)

r2
. (251)

The coupling can be evaluated nonperturbatively from the potential through a numerical dif-
ferentiation, see below. In perturbation theory one also defines couplings in different schemes
αV̄ , αV via

V (r) = −CF
αV̄ (r)

r
, or Ṽ (Q) = −CF

αV (Q)

Q2
, (252)

4With 2-loop O(a) improvement we here mean ct including the g40 term and c̃t with the g20 term. For gluonic
observables such as the running coupling this is sufficient for cutoff effects being suppressed to O(g6a).
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where one fixes the unphysical constant in the potential by limr→∞ V (r) = 0 and Ṽ (Q) is the
Fourier transform of V (r). Nonperturbatively, the subtraction of a constant in the potential
introduces an additional renormalization constant, the value of V (rref) at some distance rref .
Perturbatively, it is believed to entail a renormalon ambiguity. In perturbation theory, these
definitions are all simply related to each other, and their perturbative expansions are known
including the α4

s and α5
s logαs terms [61–68].

The potential V (r) is determined from ratios of Wilson loops, W (r, t), which behave as

〈W (r, t)〉 = |c0|2e−V (r)t +
∑

n 6=0

|cn|2e−Vn(r)t , (253)

where t is taken as the temporal extension of the loop, r is the spatial one and Vn are
excited-state potentials. To improve the overlap with the ground state, and to suppress the
effects of excited states, t is taken large. Also various additional techniques are used, such
as a variational basis of operators (spatial paths) to help in projecting out the ground state.
Furthermore some lattice-discretization effects can be reduced by averaging over Wilson loops
related by rotational symmetry in the continuum.

In order to reduce discretization errors it is of advantage to define the numerical derivative
giving the force as

F (rI) =
V (r)− V (r − a)

a
, (254)

where rI is chosen so that at tree level the force is the continuum force. F (rI) is then a
‘tree-level improved’ quantity and similarly the tree-level improved potential can be defined
[69].

Lattice potential results are in position space, while perturbation theory is naturally
computed in momentum space at large momentum. Usually, the Fourier transform is then
taken of the perturbation expansion to match to the lattice data.

Finally, as was noted in Sec. 9.2, a determination of the force can also be used to determine
the r0 scale, by defining it from the static force by

r20F (r0) = 1.65 , (255)

and with r21F (r1) = 1 the r1 scale.

9.4.2 Discussion of computations

In Tab. 45, we list results of determinations of r0ΛMS (together with ΛMS using the scale
determination of the authors). Since the last review, FLAG 13, there have been two new
computations, Karbstein 14 [9] and Bazavov 14 [10].

The first determinations in the three-colour Yang Mills theory are by UKQCD 92 [60]
and Bali 92 [73] who used αqq as explained above, but not in the tree-level improved form.
Rather a phenomenologically determined lattice artifact correction was subtracted from the
lattice potentials. The comparison with perturbation theory was on a more qualitative level
on the basis of a 2-loop β-function (nl = 1) and a continuum extrapolation could not be
performed as yet. A much more precise computation of αqq with continuum extrapolation
was performed in Refs. [34, 69]. Satisfactory agreement with perturbation theory was found
[69] but the stability of the perturbative prediction was not considered sufficient to be able
to extract a Λ parameter.
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scale ΛMS[MeV] r0ΛMS

Bazavov 14 [10] 2+1 A ◦ ⋆ ◦ r1 = 0.3106(17) fma 315(+18
−12)

b 0.746(+42
−27)

Bazavov 12 [70] 2+1 A ◦† ◦ ◦# r0 = 0.468 fm 295(30) ⋆ 0.70(7)⋆⋆

Karbstein 14 [9] 2 A ◦ ◦ ◦ r0 = 0.42 fm 331(21) 0.692(31)

ETM 11C [71] 2 A ◦ ◦ ◦ r0 = 0.42 fm 315(30)§ 0.658(55)

Brambilla 10 [72] 0 A ◦ ⋆ ◦†† 266(13)+ 0.637(+32
−30)

††

UKQCD 92 [60] 0 A ⋆ ◦++
¥

√
σ = 0.44 GeV 256(20) 0.686(54)

Bali 92 [73] 0 A ⋆ ◦++
¥

√
σ = 0.44 GeV 247(10) 0.661(27)

a Determination on lattices with mπL = 2.2− 2.6. About 10 changes of topological charge on the finest
lattice [24]. Scale from r1 [24] as determined from fπ in Ref. [32].

b α
(3)

MS
(1.5GeV) = 0.336(+12

−8 ), α
(5)

MS
(MZ) = 0.1166(+12

−8 ).
† Since values of αeff within our designated range are used, we assign a ◦ despite values of αeff up to

αeff = 0.5 being used.
# Since values of 2a/r within our designated range are used, we assign a ◦ although only values of

2a/r ≥ 1.14 are used at αeff = 0.3.
⋆ Using results from Ref. [33].

⋆⋆ α
(3)

MS
(1.5GeV) = 0.326(19), α

(5)

MS
(MZ) = 0.1156(+21

−22).
§ Both potential and r0/a are determined on a small (L = 3.2r0) lattice.

†† Uses lattice results of Ref. [34], some of which have very small lattice spacings where according to more
recent investigations a bias due to the freezing of topology may be present.

+ Only r0ΛMS is given, our conversion using r0 = 0.472 fm.
++ We give a ◦ because only a NLO formula is used and the error bars are very large; our criterion does

not apply well to these very early calculations.

Table 45: Short-distance potential results.

In Brambilla 10 [72] the same quenched lattice results of Ref. [69] were used and a fit was
performed to the continuum potential, instead of the force. Perturbation theory to nl = 3 loop
was used including a resummation of terms α3

s(αs lnαs)
n and α4

s(αs lnαs)
n. Close agreement

with perturbation theory was found when a renormalon subtraction was performed. Note that
the renormalon subtraction introduces a second scale into the perturbative formula which is
absent when the force is considered.

Bazavov 14 [10] is an update of Bazavov 12 [70] and modify this procedure somewhat.
They consider the well-defined perturbative expansion for the force, where renormalon prob-
lems disappear. They set µ = 1/r to eliminate logarithms and then integrate the force to
obtain an expression for the potential. The resulting integration constant is fixed by requir-
ing the perturbative potential to be equal to the nonperturbative one exactly at a reference
distance rref and the two are then compared at other values of r. As a further check, the
force is also used directly.
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For the quenched calculation Brambilla 10 [72] very small lattice spacings were available,
a ∼ 0.025 fm, [69]. For ETM 11C [71], Bazavov 12 [70], Karbstein 14 [9] and Bazavov 14 [10]
using dynamical fermions such small lattice spacings are not yet realized (Bazavov 14 reaches
down to a ∼ 0.041 fm). They all use the tree-level improved potential as described above.
We note that the value of ΛMS in physical units by ETM 11C [71] is based on a value of
r0 = 0.42 fm. This is at least 10% smaller than the large majority of other values of r0. Also
the value of r0/a or r1/a on the finest lattices in ETM 11C [71] and Bazavov 14 [10] come
from rather small lattices with mπL ≈ 2.4, 2.2 respectively.

Instead of the procedure discussed previously, Karbstein 14 [9] reanalyzes the data of ETM
11C [71] by first estimating the Fourier transform Ṽ (p) of V (r) and then fits the perturbative
expansion of Ṽ (p) in terms of αMS(p). Of course, the Fourier transform cannot be computed
without modelling the r-dependence of V (r) at short and at large distances. The authors
fit a linearly rising potential at large distances together with string-like corrections of order
r−n and define the potential at large distances by this fit.5 Recall that for observables in
momentum space we take the renormalization scale entering our criteria as µ = p, Eq. (248).
The analysis (as in ETM 11C [71]) is dominated by the data at the smallest lattice spacing,
where a controlled determination of the overall scale is difficult due to possible finite-size
effects.

One of the main issues for all these computations is whether the perturbative running
of the coupling constant has been reached. While for quenched or Nf = 0 fermions this
seems to be the case at the smallest distances, for dynamical fermions at present there is no
consensus. Brambilla 10 [72], Bazavov 12 [70] and Bazavov 14 [10] report good agreement
with perturbation theory after the renormalon is subtracted or eliminated, but Ref. [74] uses
the force directly, where no renormalon contributes, and finds that far shorter distances are
needed than are presently accessible for dynamical fermion simulations in order to match to
perturbation theory. Further work is needed to clarify this point.

A second issue is the coverage of configuration space in some of the simulations, which use
very small lattice spacings with periodic boundary conditions. Affected are the smallest two
lattice spacings of Bazavov 14 [10] where very few tunnelings of the topological charge occur
[24]. With present knowledge, it also seems possible that the older data by Refs. [34, 69] used
by Brambilla 10 [72] are partially done in (close to) frozen topology.

9.5 αs from the vacuum polarization at short distances

9.5.1 General considerations

The vacuum polarization function for the flavour nonsinglet currents Ja
µ (a = 1, 2, 3) in the

momentum representation is parameterized as

〈Ja
µJ

b
ν〉 = δab[(δµνQ

2 −QµQν)Π
(1)(Q)−QµQνΠ

(0)(Q)] , (256)

where Qµ is a space like momentum and Jµ ≡ Vµ for a vector current and Jµ ≡ Aµ for an

axial-vector current. Defining ΠJ(Q) ≡ Π
(0)
J (Q) + Π

(1)
J (Q), the operator product expansion

5Note that at large distances, where string breaking is known to occur, this is not any more the ground
state potential defined by Eq. (253).
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(OPE) of the vacuum polarization function ΠV+A(Q) = ΠV (Q) + ΠA(Q) is given by

ΠV+A|OPE(Q
2, αs)

= c+ C1(Q
2) + CV+A

m (Q2) m̄
2(Q)
Q2 +

∑

q=u,d,s

CV+A
q̄q (Q2)

〈mq q̄q〉
Q4

+CGG(Q
2) 〈αsGG〉

Q4 +O(Q−6) , (257)

for large Q2. CV+A
X (Q2) =

∑

i≥0

(

CV+A
X

)(i)
αi
s(Q

2) are the perturbative coefficient functions

for the operators X (X = 1, q̄q, GG) and m̄ is the running mass of the mass-degenerate up
and down quarks. C1 is known including α4

s in a continuum renormalization scheme such
as the MS scheme [75–77]. Nonperturbatively, there are terms in CX which do not have a
series expansion in αs. For an example for the unit operator see Ref. [78]. The term c is
Q–independent and divergent in the limit of infinite ultraviolet cutoff. However the Adler
function defined as

D(Q2) ≡ −Q2dΠ(Q
2)

dQ2
, (258)

is a scheme-independent finite quantity. Therefore one can determine the running coupling
constant in the MS scheme from the vacuum polarization function computed by a lattice-
QCD simulation. In more detail, the lattice data of the vacuum polarization is fitted with the
perturbative formula Eq. (257) with fit parameter ΛMS parameterizing the running coupling
αMS(Q

2).
While there is no problem in discussing the OPE at the nonperturbative level, the ‘con-

densates’ such as 〈αsGG〉 are ambiguous, since they mix with lower-dimensional operators
including the unity operator. Therefore one should work in the high-Q2 regime where power
corrections are negligible within the given accuracy. Thus setting the renormalization scale
as µ ≡

√

Q2, one should seek, as always, the window ΛQCD ≪ µ ≪ a−1.

9.5.2 Discussion of computations

Results using this method are, to date, only available using overlap fermions. These are
collected in Tab. 46 for Nf = 2, JLQCD/TWQCD 08C [80] and for Nf = 2 + 1, JLQCD 10
[79]. At present, only one lattice spacing a ≈ 0.11 fm has been simulated.

The fit to Eq. (257) is done with the 4-loop relation between the running coupling and
ΛMS. It is found that without introducing condensate contributions, the momentum scale
where the perturbative formula gives good agreement with the lattice results is very narrow,
aQ ≃ 0.8− 1.0. When condensate contributions are included the perturbative formula gives
good agreement with the lattice results for the extended range aQ ≃ 0.6 − 1.0. Since there
is only a single lattice spacing there is a ¥ for the continuum limit. The renormalization
scale µ is in the range of Q = 1.6− 2GeV. Approximating αeff ≈ αMS(Q), we estimate that
αeff = 0.25 − 0.30 for Nf = 2 and αeff = 0.29 − 0.33 for Nf = 2 + 1. Thus we give a ◦
and ¥ for Nf = 2 and Nf = 2 + 1 respectively for the renormalization scale and a ¥ for the
perturbative behaviour.

We note that more investigations of this method are in progress [81].
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scale ΛMS[MeV] r0ΛMS

JLQCD 10 [79] 2+1 A ¥ ¥ ¥ r0 = 0.472 fm 247(5)† 0.591(12)

JLQCD/TWQCD 08C [80] 2 A ◦ ¥ ¥ r0 = 0.49 fm 234(9)(+16
−0 ) 0.581(22)(+40

−0 )

† α
(5)

MS
(MZ) = 0.1118(3)(+16

−17).

Table 46: Vacuum polarization results.

9.6 αs from observables at the lattice spacing scale

9.6.1 General considerations

The general method is to evaluate a short-distance quantity Q at the scale of the lattice
spacing ∼ 1/a and then determine its relationship to αMS via a power series expansion.

This is epitomized by the strategy of the HPQCD collaboration [82, 83], discussed here
for illustration, which computes and then fits to a variety of short-distance quantities, Y ,

Y =

nmax
∑

n=1

cnα
n
V′(q∗) . (259)

Y is taken as the logarithm of small Wilson loops (including some nonplanar ones), Creutz
ratios, ‘tadpole-improved’ Wilson loops and the tadpole-improved or ‘boosted’ bare coupling
(O(20) quantities in total). cn are perturbative coefficients (each depending on the choice of
Y ) known to n = 3 with additional coefficients up to nmax being numerically fitted. αV′ is
the running coupling constant related to αV from the static-quark potential (see Sec. 9.4).6

The coupling constant is fixed at a scale q∗ = d/a. This is chosen as the mean value of ln q
with the one gluon loop as measure [84, 85]. (Thus a different result for d is found for every
short-distance quantity.) A rough estimate yields d ≈ π, and in general the renormalization
scale is always found to lie in this region.

For example for the Wilson loop Wmn ≡ 〈W (ma, na)〉 we have

ln

(

Wmn

u
2(m+n)
0

)

= c1αV′(q∗) + c2α
2
V′(q∗) + c3α

3
V′(q∗) + · · · , (260)

for the tadpole-improved version, where c1, c2 , . . . are the appropriate perturbative coefficients

and u0 = W
1/4
11 . Substituting the nonperturbative simulation value in the left hand side, we

can determine αV′(q∗), at the scale q∗. Note that one finds empirically that perturbation

6 αV′ is defined by ΛV′ = ΛV and bV
′

i = bVi for i = 0, 1, 2 but bV
′

i = 0 for i ≥ 3.
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theory for these tadpole-improved quantities have smaller cn coefficients and so the series has
a faster apparent convergence.

Using the β-function in the V′ scheme, results can be run to a reference value, chosen
as α0 ≡ αV′(q0), q0 = 7.5GeV. This is then converted perturbatively to the continuum MS
scheme

αMS(q0) = α0 + d1α
2
0 + d2α

3
0 + · · · , (261)

where d1, d2 are known one and two loop coefficients.
Other collaborations have focused more on the bare ‘boosted’ coupling constant and di-

rectly determined its relationship to αMS. Specifically, the boosted coupling is defined by

αP(1/a) =
1

4π

g20
u40

, (262)

again determined at a scale ∼ 1/a. As discussed previously since the plaquette expectation
value in the boosted coupling contains the tadpole diagram contributions to all orders, which
are dominant contributions in perturbation theory, there is an expectation that the pertur-
bation theory using the boosted coupling has smaller perturbative coefficients [84], and hence
smaller perturbative errors.

9.6.2 Continuum limit

Lattice results always come along with discretization errors, which one needs to remove by a
continuum extrapolation. As mentioned previously, in this respect the present method differs
in principle from those in which αs is determined from physical observables. In the general
case, the numerical results of the lattice simulations at a value of µ fixed in physical units can
be extrapolated to the continuum limit, and the result can be analyzed as to whether it shows
perturbative running as a function of µ in the continuum. For observables at the cutoff-scale
(q∗ = d/a), discretization effects cannot easily be separated out from perturbation theory, as
the scale for the coupling comes from the lattice spacing. Therefore the restriction aµ ≪ 1
(the ‘continuum extrapolation’ criterion) is not applicable here. Discretization errors of order
a2 are, however, present. Since a ∼ exp(−1/(2b0g

2
0)) ∼ exp(−1/(8πb0α(q

∗)), these errors now
appear as power corrections to the perturbative running, and have to be taken into account
in the study of the perturbative behaviour, which is to be verified by changing a. One thus
usually fits with power corrections in this method.

In order to keep a symmetry with the ‘continuum extrapolation’ criterion for physical
observables and to remember that discretization errors are, of course, relevant, we replace it
here by one for the lattice spacings used:

• Lattice spacings

⋆ 3 or more lattice spacings, at least 2 points below a = 0.1 fm

◦ 2 lattice spacings, at least 1 point below a = 0.1 fm

¥ otherwise
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9.6.3 Discussion of computations

Note that due to µ ∼ 1/a being relatively large the results easily have a ⋆ or ◦ in the rating
on renormalization scale.

The work of El-Khadra 92 [86] employs a 1-loop formula to relate α
(0)

MS
(π/a) to the boosted

coupling for three lattice spacings a−1 = 1.15, 1.78, 2.43GeV. (The lattice spacing is deter-

mined from the charmonium 1S-1P splitting.) They obtain Λ
(0)

MS
= 234MeV, corresponding

to αeff = α
(0)

MS
(π/a) ≈ 0.15 - 0.2. The work of Aoki 94 [87] calculates α

(2)
V and α

(2)

MS
for a single

lattice spacing a−1 ∼ 2GeV again determined from charmonium 1S-1P splitting in 2-flavour

QCD. Using 1-loop perturbation theory with boosted coupling, they obtain α
(2)
V = 0.169 and

α
(2)

MS
= 0.142. Davies 94 [88] gives a determination of αV from the expansion

− lnW11 ≡ 4π
3 α

(Nf )
V (3.41/a)× [1− (1.185 + 0.070Nf )α

(Nf )
V ] , (263)

neglecting higher-order terms. They compute the Υ spectrum in Nf = 0, 2 QCD for single
lattice spacings at a−1 = 2.57, 2.47GeV and obtain αV(3.41/a) ≃ 0.15, 0.18 respectively.

Extrapolating the inverse coupling linearly in Nf , a value of α
(3)
V (8.3GeV) = 0.196(3) is

obtained. SESAM 99 [89] follows a similar strategy, again for a single lattice spacing. They

linearly extrapolated results for 1/α
(0)
V , 1/α

(2)
V at a fixed scale of 9GeV to give α

(3)
V , which is

then perturbatively converted to α
(3)

MS
. This finally gave α

(5)

MS
(MZ) = 0.1118(17). Wingate 95

[90] also follow this method. With the scale determined from the charmonium 1S-1P splitting
for single lattice spacings in Nf = 0, 2 giving a−1 ≃ 1.80GeV for Nf = 0 and a−1 ≃ 1.66GeV

for Nf = 2 they obtain α
(0)
V (3.41/a) ≃ 0.15 and α

(2)
V ≃ 0.18 respectively. Extrapolating the

coupling linearly in Nf , they obtain α
(3)
V (6.48GeV) = 0.194(17).

The QCDSF/UKQCD collaborations, QCDSF/UKQCD 05 [93], [94–96], use the 2-loop
relation (re-written here in terms of α)

1

αMS(µ)
=

1

αP(1/a)
+ 4π(2b0 ln aµ− tP1 ) + (4π)2(2b1 ln aµ− tP2 )αP(1/a) , (264)

where tP1 and tP2 are known. (A 2-loop relation corresponds to a 3-loop lattice β-function.)
This was used to directly compute αMS, and the scale was chosen so that the O(α0

P) term
vanishes, i.e.

µ∗ =
1

a
exp [tP1 /(2b0)] ≈

{

2.63/a Nf = 0
1.4/a Nf = 2

. (265)

The method is to first compute αP(1/a) and from this using Eq. (264) to find αMS(µ
∗). The

RG equation, Eq. (233), then determines µ∗/ΛMS and hence using Eq. (265) leads to the
result for r0ΛMS. This avoids giving the scale in MeV until the end. In the Nf = 0 case
7 lattice spacings were used [34], giving a range µ∗/ΛMS ≈ 24 - 72 (or a−1 ≈ 2 - 7GeV)
and αeff = αMS(µ

∗) ≈ 0.15 - 0.10. Neglecting higher-order perturbative terms (see discussion
after Eq. (266) below) in Eq. (264) this is sufficient to allow a continuum extrapolation of
r0ΛMS. A similar computation for Nf = 2 by QCDSF/UKQCD 05 [93] gave µ∗/ΛMS ≈ 12
- 17 (or roughly a−1 ≈ 2 - 3GeV) and αeff = αMS(µ

∗) ≈ 0.20 - 0.18. The Nf = 2 results
of QCDSF/UKQCD 05 [93] are affected by an uncertainty which was not known at the time
of publication: It has been realized that the values of r0/a of Ref. [93] were significantly too
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scale ΛMS[MeV] r0ΛMS

HPQCD 10a§ [91] 2+1 A ◦ ⋆ ⋆ r1 = 0.3133(23) fm 340(9) 0.812(22)

HPQCD 08Aa [83] 2+1 A ◦ ⋆ ⋆ r1 = 0.321(5) fm†† 338(12)⋆ 0.809(29)

Maltman 08a [92] 2+1 A ◦ ◦ ⋆ r1 = 0.318 fm 352(17)† 0.841(40)

HPQCD 05Aa [82] 2+1 A ◦ ◦ ◦ r1
†† 319(17)⋆⋆ 0.763(42)

QCDSF/UKQCD 05 [93] 2 A ⋆ ¥ ⋆ r0 = 0.467(33) fm 261(17)(26) 0.617(40)(21)b

SESAM 99c [89] 2 A ◦ ¥ ¥ cc̄(1S-1P)

Wingate 95d [90] 2 A ⋆ ¥ ¥ cc̄(1S-1P)
Davies 94e [88] 2 A ⋆ ¥ ¥ Υ

Aoki 94f [87] 2 A ⋆ ¥ ¥ cc̄(1S-1P)

FlowQCD 15 [11] 0 P ⋆ ⋆ ⋆ w0.4 = 0.193(3) fmi 258(6)i 0.618(11)i

QCDSF/UKQCD 05 [93] 0 A ⋆ ◦ ⋆ r0 = 0.467(33) fm 259(1)(20) 0.614(2)(5)b

SESAM 99c [89] 0 A ⋆ ¥ ¥ cc̄(1S-1P)

Wingate 95d [90] 0 A ⋆ ¥ ¥ cc̄(1S-1P)
Davies 94e [88] 0 A ⋆ ¥ ¥ Υ

El-Khadra 92g [86] 0 A ⋆ ¥ ◦ cc̄(1S-1P) 234(10) 0.560(24)h

a The numbers for Λ have been converted from the values for α
(5)
s (MZ).

§ α
(3)

MS
(5 GeV) = 0.2034(21), α

(5)

MS
(MZ) = 0.1184(6), only update of intermediate scale and c-, b-quark

masses, supersedes HPQCD 08A.
† α

(5)

MS
(MZ) = 0.1192(11).

⋆ α
(3)
V (7.5GeV) = 0.2120(28), α

(5)

MS
(MZ) = 0.1183(8), supersedes HPQCD 05.

†† Scale is originally determined from Υ mass splitting. r1 is used as an intermediate scale. In conversion
to r0ΛMS, r0 is taken to be 0.472 fm.

⋆⋆ α
(3)
V (7.5GeV) = 0.2082(40), α

(5)

MS
(MZ) = 0.1170(12).

b This supersedes Refs. [94–96]. α
(5)

MS
(MZ) = 0.112(1)(2). The Nf = 2 results were based on values

for r0/a which have later been found to be too small [29]. The effect will be of the order of 10–15%,
presumably an increase in Λr0.

c α
(5)

MS
(MZ) = 0.1118(17).

d α
(3)
V (6.48GeV) = 0.194(7) extrapolated from Nf = 0, 2. α

(5)

MS
(MZ) = 0.107(5).

e α
(3)
P (8.2GeV) = 0.1959(34) extrapolated from Nf = 0, 2. α

(5)

MS
(MZ) = 0.115(2).

f Estimated α
(5)

MS
(MZ) = 0.108(5)(4).

g This early computation violates our requirement that scheme conversions are done at the 2-loop level.
Λ

(4)

MS
= 160(+47

−37)MeV, α
(4)

MS
(5GeV) = 0.174(12). We converted this number to give α

(5)

MS
(MZ) = 0.106(4).

h We used r0 = 0.472 fm to convert to r0ΛMS.
i Reference scale w0.4 where wx is defined by t∂t[t

2〈E(t)〉]
∣

∣

t=w2
x

= x in terms of the action density E(t)

at positive flow time t [11]. Our conversion to r0 scale using [11] r0/w0.4 = 2.587(45) and r0 = 0.472 fm.

Table 47: Wilson loop results.
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low [29]. As this effect is expected to depend on a, it influences the perturbative behaviour
leading us to assign a ¥ for that criterion.

Since FLAG 13, there has been one new result for Nf = 0 by FlowQCD 15 [11]. They also
use the techniques as described in Eqs. (264), (265), but together with the gradient flow scale
w0 (rather than the r0 scale). The continuum limit is estimated by extrapolating the data
at 9 lattice spacings linearly in a2. The data range used is µ∗/ΛMS ≈ 40 - 120 (or a−1 ≈ 3
- 11GeV) and αMS(µ

∗) ≈ 0.12 - 0.09. Since a very small value of αMS is reached, there is a
⋆ in the perturbative behaviour. Note that our conversion to the common r0 scale leads to
a significant increase of the error of the Λ parameter compared to7 w0.4ΛMS = 0.2388(5)(13).

The work of HPQCD 05A [82] (which supersedes the original work [97]) uses three lattice
spacings a−1 ≈ 1.2, 1.6, 2.3GeV for 2 + 1 flavour QCD. Typically the renormalization scale
q ≈ π/a ≈ 3.50− 7.10GeV, corresponding to αV′ ≈ 0.22− 0.28.

In the later update HPQCD 08A [83] twelve data sets (with six lattice spacings) are now
used reaching up to a−1 ≈ 4.4GeV corresponding to αV′ ≈ 0.18. The values used for the scale
r1 were further updated in HPQCD 10 [91]. Maltman 08 [92] uses most of the same lattice
ensembles as HPQCD 08A [83], but considers a much smaller set of quantities (three versus
22) that are less sensitive to condensates. They also use different strategies for evaluating the
condensates and for the perturbative expansion, and a slightly different value for the scale r1.
The central values of the final results from Maltman 08 [92] and HPQCD 08A [83] differ by
0.0009 (which would be decreased to 0.0007 taking into account a reduction of 0.0002 in the
value of the r1 scale used by Maltman 08 [92]).

As mentioned before, the perturbative coefficients are computed through 3-loop order [98],
while the higher-order perturbative coefficients cn with nmax ≥ n > 3 (with nmax = 10) are
numerically fitted using the lattice-simulation data for the lattice spacings with the help of
Bayesian methods. It turns out that corrections in Eq. (260) are of order |ci/c1|αi = 5–15%
and 3–10% for i = 2, 3, respectively. The inclusion of a fourth-order term is necessary to
obtain a good fit to the data, and leads to a shift of the result by 1 – 2 sigma. For all but one
of the 22 quantities, central values of |c4/c1| ≈ 2− 4 were found, with errors from the fits of
≈ 2.

An important source of uncertainty is the truncation of perturbation theory. In HPQCD
08A [83], 10 [91] it is estimated to be about 0.4% of αMS(MZ). In FLAG 13 we included
a rather detailed discussion of the issue with the result that we prefer for the time being a
more conservative error based on the above estimate |c4/c1| = 2. From Eq. (259) this gives
an estimate of the uncertainty in αeff of

∆αeff(µ1) =

∣

∣

∣

∣

c4
c1

∣

∣

∣

∣

α4
eff(µ1) , (266)

at the scale µ1 where αeff is computed from the Wilson loops. This can be used with a
variation in Λ at lowest order of perturbation theory and also applied to αs evolved to a
different scale µ2

8,

∆Λ

Λ
=

1

8πb0αs

∆αs

αs
,

∆αs(µ2)

∆αs(µ1)
=

α2
s(µ2)

α2
s(µ1)

. (267)

7The scale w0.4 used in FlowQCD 15 [11] is a modified w0 Wilson flow scale. With this notation w0 ≡ w0.3.
8From Eq. (238) we see that αs is continuous and differentiable across the mass thresholds (at the same

scale). Therefore to leading order αs and ∆αs are independent of Nf .
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We shall later use this with µ2 = MZ and αs(µ1) = 0.2 as a typical value extracted from
Wilson loops in HPQCD 10 [91], HPQCD 08A [83].

Again we note that the results of QCDSF/UKQCD 05 [93] (Nf = 0) and FlowQCD
15 [11] may be affected by frozen topology as they have lattice spacings significantly below
a = 0.05 fm. The associated additional systematic error is presently unknown.

Tab. 47 summarizes the results.

9.7 αs from current two-point functions

9.7.1 General considerations

The method has been introduced in Ref. [99] and updated in Ref. [91], see also Ref. [100].
Since FLAG 13 a new application, HPQCD 14A [12], with 2+1+1 flavours has appeared.
There the definition for larger-n moments is somewhat simplified and we describe it here.
The previously used one can be found in FLAG 13.

The basic observable is constructed from a current

J(x) = im0hψh(x)γ5ψh′(x) (268)

of two mass-degenerate heavy-valence quarks, h, h′. The pre-factorm0h denotes the bare mass
of the quark. With a residual chiral symmetry, J(x) is a renormalization group invariant local
field, i.e. it requires no renormalization. Staggered fermions and twisted mass fermions have
such a residual chiral symmetry. The (Euclidean) time-slice correlation function

G(x0) = a3
∑

~x

〈J†(x)J(0)〉 , (269)

(J†(x) = im0hψh′(x)γ5ψh(x)) has a ∼ x−3
0 singularity at short distances and moments

Gn = a

T/2−a
∑

t=−(T/2−a)

tnG(t) , (270)

are nonvanishing for even n and furthermore finite for n ≥ 4. Here T is the time extent of
the lattice. The moments are dominated by contributions at t of order 1/m0h. For large
mass m0h these are short distances and the moments become increasingly perturbative for

decreasing n. Denoting the lowest-order perturbation theory moments by G
(0)
n , one defines

the normalized moments

R̃n =











G4/G
(0)
4 for n = 4 ,

G
1/(n−4)
n

m0c

(

G
(0)
n

)1/(n−4) for n ≥ 6 ,
(271)

of even order n. Note that Eq. (268) contains the variable (bare) heavy-quark mass m0h,
while Eq. (271) is defined with the charm-quark mass, tuned to its physical value. The

normalization m0c

(

G
(0)
n

)1/(n−4)
in Eq. (271) ensures that R̃n remains renormalization group

invariant, but introduces a mass scale. In the continuum limit the normalized moments can
then be parameterized in terms of functions

R̃n ≡
{

r4(αs(µ)) for n = 4 ,

rn(αs(µ))
m̄c(µ)

for n ≥ 6 ,
(272)
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with m̄c(µ) being the renormalized charm-quark mass. The reduced moments rn have a
perturbative expansion

rn = 1 + rn,1αs + rn,2α
2
s + rn,3α

3
s + . . . , (273)

where the written terms rn,i(µ/m̄h(µ)), i ≤ 3 are known for low n from Refs. [101–105]. In
practice, the expansion is performed in the MS scheme. Matching nonperturbative lattice
results for the moments to the perturbative expansion, one determines an approximation
to αMS(µ) as well as m̄c(µ). With the lattice spacing (scale) determined from some extra
physical input, this calibrates µ. As usual suitable pseudoscalar masses determine the bare
quark masses, here in particular the charm mass, and then through Eq. (272) the renormalized
charm-quark mass.

A difficulty with this approach is that large masses are needed to enter the perturbative
domain. Lattice artefacts can then be sizeable and have a complicated form. The ratios in
Eq. (271) use the tree-level lattice results in the usual way for normalization. This results in
unity as the leading term in Eq. (273), suppressing some of the kinematical lattice artefacts.
We note that in contrast to e.g. the definition of αqq, here the cutoff effects are of order
akαs, while there the tree-level term defines αs and therefore the cutoff effects after tree-level
improvement are of order akα2

s.
Finite-size effects (FSE) due to the omission of |t| > T/2 in Eq. (270) grow with n as

(mpT/2)
n exp (−mpT/2). In practice, however, since the (lower) moments are short-distance

dominated, the FSE are expected to be irrelevant at the present level of precision.
Moments of correlation functions of the quark’s electromagnetic current can also be ob-

tained from experimental data for e+e− annihilation [106, 107]. This enables a nonlattice
determination of αs using a similar analysis method. In particular, the same continuum
perturbation theory computation enters both the lattice and the phenomenological determi-
nations.

9.7.2 Discussion of computations

The method has originally been applied in HPQCD 08B [99] and in HPQCD 10 [91], based
on the MILC ensembles with 2 + 1 flavours of Asqtad staggered quarks and HISQ valence
quarks. The scale was set using r1 = 0.321(5) fm in HPQCD 08B [99] and the updated
value r1 = 0.3133(23) fm in HPQCD 10 [91]. The effective range of couplings used is here
given for n = 4, which is the moment most dominated by short (perturbative) distances and
important in the determination of αs. The range is similar for other ratios. With r4,1 = 0.7427
and R4 = 1.28 determined in the continuum limit at the charm mass in Ref. [99], we have
αeff = 0.38 at the charm-quark mass, which is the mass value where HPQCD 08B [99] carries
out the analysis. In HPQCD 10 [91] a set of masses is used, with R4 ∈ [1.09, 1.29] which
corresponds to αeff ∈ [0.12, 0.40].

The available data of HPQCD 10 [91] is summarized in the left panel of Fig. 31 where we
plot αeff against mpr1. For the continuum limit criterion, we choose the scale µ = 2m̄h ≈
mp/1.1, where we have taken m̄h in the MS scheme at scale m̄h and the numerical value 1.1
was determined in HPQCD 10B [108].

The data in Fig. 31 are grouped according to the range of aµ that they cover. The vertical
spread of the results for αeff at fixed r1mp in the figure measures the discretization errors
seen: in the continuum we would expect all the points to lie on one universal curve. The plots
illustrate the selection applied by our criterion for the continuum limit with our choices for
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Figure 31: αeff for R4 from HPQCD 10 data (left) and from HPQCD 14A (right). A similar
graph for R6/R8 is shown in FLAG 13. Symbols correspond to ◦ for data with 1 ≤ aµ ≤ 1.5
and ¥ for aµ > 1.5, while ⋆ (aµ < 1/2) is not present. This corresponds exactly to the
aµ part of our continuum limit criterion, but does not consider how many lattice spacings
are present. Note that mistunings in the quark masses have not been accounted for, but,
estimated as in HPQCD 14A [12], they are smaller than the size of the symbols in the graphs.

µ. Fig. 31 gives reason for concern, since it shows that the discretization errors that need to
be removed in the continuum extrapolation are not small.

With our choices for µ, the continuum limit criterion is satisfied for 3 lattice spacings
when αeff ≤ 0.3 and n = 4. Larger-n moments are more influenced by nonperturbative
effects. For the n values considered, adding a gluon condensate term only changed error bars
slightly in HPQCD’s analysis. We note that HPQCD in their papers perform a global fit
to all data using a joint expansion in powers of αn

s , (Λ/(mp/2))
j to parameterize the heavy-

quark mass dependence, and (amp/2)
2i to parameterize the lattice-spacing dependence. To

obtain a good fit, they must exclude data with amp > 1.95 and include lattice-spacing terms
a2i with i greater than 10. Because these fits include many more fit parameters than data
points, HPQCD uses their expectations for the sizes of coefficients as Bayesean priors. The
fits include data with masses as large as amp/2 ∼ 0.86, so there is only minimal suppression
of the many high-order contributions for the heavier masses. It is not clear, however, how
sensitive the final results are to the larger amp/2 values in the data. The continuum limit
of the fit is in agreement with a perturbative scale dependence (a 5-loop running αMS with
a fitted 5-loop coefficient in the β-function is used). Indeed, Fig. 2 of Ref. [91] suggests that
HPQCD’s fit describes the data well.

The new computation, HPQCD 14A [12], is based on MILC’s 2+1+1 HISQ staggered en-
sembles. Compared to HPQCD 10 [91] valence- and sea-quarks now use the same discretiza-
tion and the scale is set through the gradient flow scale w0, determined to w0 = 0.1715(9) fm
in Ref. [109].

We again show the values of αeff as a function of the physical scale. Discretization errors
are noticeable. A number of data points, satisfy our continuum limit criterion aµ < 1.5, at
two different lattice spacings. This does not by itself lead to a ◦ but the next-larger lattice
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spacing does not miss the criterion by much, see Tab. ??. We therefore assign a ◦ in that
criterion.

The other details of the analysis by HPQCD 10 [91] are very similar to the ones described
above, with one noteworthy exception. The new definition of the moments does not involve
the pseudoscalar hh̄ mass anymore. Therefore its relation to the quark mass does not need
to be modeled in the fit. Since it is now replaced by the renormalized charm-quark mass, the
analysis produces a result for αs and the charm-quark mass at the same time. Here we only
discuss the result for αs.

In Tab. 48 we list the current two-point function results. Thus far, only one group has used
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scale ΛMS[MeV] r0ΛMS

HPQCD 14A [12] 2+1+1 A ◦ ⋆ ◦ w0 = 0.1715(9) fma 294(11)bc 0.703(26)

HPQCD 10 [91] 2+1 A ◦ ⋆ ◦ r1 = 0.3133(23) fm† 338(10)⋆ 0.809(25)

HPQCD 08B [99] 2+1 A ¥ ¥ ¥ r1 = 0.321(5) fm† 325(18)+ 0.777(42)

a Scale determined in [110] using fπ.
b α

(4)

MS
(5GeV) = 0.2128(25), α

(5)

MS
(MZ) = 0.11822(74).

c Our conversion for ΛMS for Nf = 4. We also used r0 = 0.472 fm.
† Scale is determined from Υ mass splitting.
⋆ α

(3)

MS
(5GeV) = 0.2034(21), α

(5)

MS
(MZ) = 0.1183(7).

+ α
(4)

MS
(3GeV) = 0.251(6), α

(5)

MS
(MZ) = 0.1174(12).

Table 48: Current two-point function results.

this approach, which models complicated and potentially large cutoff effects together with a
perturbative coefficient. We therefore are waiting to see confirmation by other collaborations
of the small systematic errors obtained (cf. discussion in Sec. 9.9.2). (We note that more
investigations of this method are in progress [111].) We do, however, include the values of
αMS(MZ) and ΛMS of HPQCD 10 [91] and HPQCD 14A [12] in our final range.

9.8 αs from QCD vertices

9.8.1 General considerations

The most intuitive and in principle direct way to determine the coupling constant in QCD is to
compute the appropriate three- or four-point gluon vertices or alternatively the quark-quark-
gluon vertex or ghost-ghost-gluon vertex (i.e. qqA or ccA vertex respectively). A suitable
combination of renormalization constants then leads to the relation between the bare (lat-
tice) and renormalized coupling constant. This procedure requires the implementation of
a nonperturbative renormalization condition and the fixing of the gauge. For the study of
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nonperturbative gauge fixing and the associated Gribov ambiguity, we refer to Refs. [112–
114] and references therein. In practice the Landau gauge is used and the renormalization
constants are defined by requiring that the vertex is equal to the tree level value at a certain
momentum configuration. The resulting renormalization schemes are called ‘MOM’ scheme

(symmetric momentum configuration) or ‘M̃OM’ (one momentum vanishes), which are then
converted perturbatively to the MS scheme.

A pioneering work to determine the three-gluon vertex in theNf = 0 theory is Alles 96 [115]
(which was followed by Ref. [116] for two flavour QCD); a more recent Nf = 0 computation
was Ref. [117] in which the three-gluon vertex as well as the ghost-ghost-gluon vertex was
considered. (This requires in general a computation of the propagator of the Faddeev–Popov
ghost on the lattice.) The latter paper concluded that the resulting ΛMS depended strongly
on the scheme used, the order of perturbation theory used in the matching and also on
nonperturbative corrections [118].

Subsequently in Refs. [119, 120] a specific M̃OM scheme with zero ghost momentum for
the ghost-ghost-gluon vertex was used. In this scheme, dubbed the ‘MM’ (Minimal MOM) or
‘Taylor’ (T) scheme, the vertex is not renormalized, and so the renormalized coupling reduces
to

αT(µ) = Dgluon
lat (µ, a)Dghost

lat (µ, a)2
g20(a)

4π
, (274)

where Dghost
lat and Dgluon

lat are the (bare lattice) dressed ghost and gluon ‘form factors’ of these
propagator functions in the Landau gauge,

Dab(p) = −δab
Dghost(p)

p2
, Dab

µν(p) = δab
(

δµν −
pµpν
p2

)

Dgluon(p)

p2
, (275)

and we have written the formula in the continuum with Dghost/gluon(p) = D
ghost/gluon
lat (p, 0).

Thus there is now no need to compute the ghost-ghost-gluon vertex, just the ghost and gluon
propagators.

9.8.2 Discussion of computations

For the calculations considered here, to match to perturbative scaling, it was first necessary
to reduce lattice artifacts by an H(4) extrapolation procedure (addressing O(4) rotational
invariance), e.g. ETM 10F [126] or by lattice perturbation theory, e.g. Sternbeck 12 [124]. To
match to perturbation theory, collaborations vary in their approach. In ETM 10F [126] it was
necessary to include the operator A2 in the OPE of the ghost and gluon propagators, while in
Sternbeck 12 [124] very large momenta are used and a2p2 and a4p4 terms are included in their
fit to the momentum dependence. A further later refinement was the introduction of higher
nonperturbative OPE power corrections in ETM 11D [123] and ETM 12C [122]. Although
the expected leading power correction, 1/p4, was tried, ETM finds good agreement with their
data only when they fit with the next-to-leading-order term, 1/p6. The update ETM 13D
[121] investigates this point in more detail, using better data with reduced statistical errors.
They find that after again including the 1/p6 term they can describe their data over a large
momentum range from about 1.75 GeV to 7 GeV.

In all calculations except for Sternbeck 10 [125], Sternbeck 12 [124] , the matching with the
perturbative formula is performed including power corrections in the form of condensates, in
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scale ΛMS[MeV] r0ΛMS

ETM 13D [121] 2+1+1 A ◦ ◦ ¥ fπ 314(7)(14)(10)§ 0.752(18)(34)(81)†

ETM 12C [122] 2+1+1 A ◦ ◦ ¥ fπ 324(17)§ 0.775(41)†

ETM 11D [123] 2+1+1 A ◦ ◦ ¥ fπ 316(13)(8)(+0
−9)

⋆ 0.756(31)(19)(+0
−22)

†

Sternbeck 12 [124] 2+1 C only running of αs in Fig. 4

Sternbeck 12 [124] 2 C Agreement with r0ΛMS value of [29]

Sternbeck 10 [125] 2 C ◦ ⋆ ¥ 251(15)# 0.60(3)(2)
ETM 10F [126] 2 A ◦ ◦ ◦ fπ 330(23)(22)(+0

−33) 0.72(5)+

Boucaud 01B [116] 2 A ◦ ◦ ¥ K∗ −K 264(27)⋆⋆ 0.669(69)

Sternbeck 12 [124] 0 C Agreement with r0ΛMS value of [72]

Sternbeck 10 [125] 0 C ⋆ ⋆ ¥ 259(4)# 0.62(1)
Ilgenfritz 10 [127] 0 A ⋆ ⋆ ¥ only running of αs in Fig. 13
Boucaud 08 [120] 0 A ◦ ⋆ ¥

√
σ = 445MeV 224(3)(+8

−5) 0.59(1)(+2
−1)

Boucaud 05 [117] 0 A ¥ ⋆ ¥
√
σ = 445MeV 320(32) 0.85(9)

Soto 01 [128] 0 A ◦ ◦ ◦ √
σ = 445MeV 260(18) 0.69(5)

Boucaud 01A [129] 0 A ◦ ◦ ◦ √
σ = 445MeV 233(28) MeV 0.62(7)

Boucaud 00B [130] 0 A ◦ ◦ ◦ only running of αs

Boucaud 00A [131] 0 A ◦ ◦ ◦ √
σ = 445MeV 237(3)(+ 0

−10) 0.63(1)(+0
−3)

Becirevic 99B[132] 0 A ◦ ◦ ¥
√
σ = 445MeV 319(14)(+10

−20) 0.84(4)(+3
−5)

Becirevic 99A[133] 0 A ◦ ◦ ¥
√
σ = 445MeV . 353(2)(+25

−15) . 0.93(+7
−4)

Boucaud 98B [134] 0 A ¥ ◦ ¥
√
σ = 445MeV 295(5)(15) 0.78(4)

Boucaud 98A [135] 0 A ¥ ◦ ¥
√
σ = 445MeV 300(5) 0.79(1)

Alles 96 [115] 0 A ¥ ¥ ¥
√
σ = 440MeV++ 340(50) 0.91(13)

† We use the 2+1 value r0 = 0.472 fm.
§ α

(5)

MS
(MZ) = 0.1200(14).

⋆ First error is statistical; second is due to the lattice spacing and third is due to the chiral extrapolation.
α
(5)

MS
(MZ) = 0.1198(9)(5)(+0

−5).
# In the paper only r0ΛMS is given, we converted to MeV with r0 = 0.472 fm.
+ The determination of r0 from the fπ scale is found in Ref. [27].
⋆⋆ α

(5)

MS
(MZ) = 0.113(3)(4).

++ The scale is taken from the string tension computation of Ref. [73].

Table 49: Results for the gluon–ghost vertex.

particular 〈A2〉. Three lattice spacings are present in almost all calculations with Nf = 0, 2,
but the scales ap are rather large. This mostly results in a ¥ on the continuum extrapolation
(Sternbeck 10 [125], Boucaud 01B [116] for Nf = 2. Ilgenfritz 10 [127], Boucaud 08 [120],
Boucaud 05 [117], Becirevic 99B [132], Becirevic 99A [133], Boucaud 98B [134], Boucaud 98A
[135], Alles 96 [115] for Nf = 0). A ◦ is reached in the Nf = 0 computations Boucaud
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00A [131], 00B [130], 01A [129], Soto 01 [128] due to a rather small lattice spacing, but
this is done on a lattice of a small physical size. The Nf = 2 + 1 + 1 calculation, fitting
with condensates, is carried out for two lattice spacings and with ap > 1.5, giving ¥ for the
continuum extrapolation as well. In ETM 10F [126] we have 0.25 < αeff < 0.4, while in ETM
11D [123], ETM 12C [122] (and ETM 13 [136]) we find 0.24 < αeff < 0.38 which gives a green
circle in these cases for the renormalization scale. In ETM 10F [126] the values of ap violate
our criterion for a continuum limit only slightly, and we give a ◦.

In Sternbeck 10 [125], the coupling ranges over 0.07 ≤ αeff ≤ 0.32 for Nf = 0 and
0.19 ≤ αeff ≤ 0.38 for Nf = 2 giving ⋆ and ◦ for the renormalization scale respectively. The
fit with the perturbative formula is carried out without condensates, giving a satisfactory
description of the data. In Boucaud 01A [129], depending on a, a large range of αeff is used
which goes down to 0.2 giving a ◦ for the renormalization scale and perturbative behaviour,
and several lattice spacings are used leading to ◦ in the continuum extrapolation. The Nf = 2
computation Boucaud 01B [129], fails the continuum limit criterion because both aµ is too
large and an unimproved Wilson fermion action is used. Finally in the conference proceedings
Sternbeck 12 [124], theNf = 0, 2, 3 coupling αT is studied. Subtracting 1-loop lattice artefacts
and subsequently fitting with a2p2 and a4p4 additional lattice artefacts, agreement with the
perturbative running is found for large momenta (r20p

2 > 600) without the need for power
corrections. In these comparisons, the values of r0ΛMS from other collaborations are used.
As no numbers are given, we have not introduced ratings for this study.

In Tab. 49 we summarize the results. Presently there are no Nf ≥ 3 calculations of αs

from QCD vertices that satisfy the FLAG criteria to be included in the range.

9.9 Summary

9.9.1 The present situation

We first summarize the status of lattice-QCD calculations of the QCD scale ΛMS. Fig. 32
shows all results for r0ΛMS discussed in the previous sections.

Many of the numbers are the ones given directly in the papers. However, when only ΛMS

in physical units (MeV) is available, we have converted them by multiplying with the value
of r0 in physical units. The notation used is full green squares for results used in our final
average, while a lightly shaded green square indicates that there are no red squares in the
previous colour coding but the computation does not enter the ranges because either it has
been superseded by an update or it is not published. Red open squares mean that there is at
least one red square in the colour coding.

For Nf = 0 there is relatively little spread in the more recent numbers, even in those
which do not satisfy our criteria.

When two flavours of quarks are included, the numbers extracted by the various groups
show a considerable spread, as in particular older computations did not yet control the sys-
tematics sufficiently. This illustrates the difficulty of the problem and emphasizes the need
for strict criteria. The agreement among the more modern calculations with three or more
flavours, however, is quite good.

We now turn to the status of the essential result for phenomenology, α
(5)

MS
(MZ). In Tab. 50

and Fig. 33 we show all the results for α
(5)

MS
(MZ) (i.e. αMS at the Z mass) obtained from

Nf = 2 + 1 and Nf = 2 + 1 + 1 simulations. For comparison, we also include results from
Nf = 0, 2 simulations, which are not relevant for phenomenology. For the Nf ≥ 3 simulations,
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αMS(MZ) Method Table

HPQCD 14A [12] 2+1+1 A ◦ ⋆ ◦ 0.11822(74) current two points 48
ETM 13D [121] 2+1+1 A ◦ ◦ ¥ 0.1196(4)(8)(16) gluon-ghost vertex 49
ETM 12C [122] 2+1+1 A ◦ ◦ ¥ 0.1200(14) gluon-ghost vertex 49
ETM 11D [123] 2+1+1 A ◦ ◦ ¥ 0.1198(9)(5)(+0

−5) gluon-ghost vertex 49

Bazavov 14 [10] 2+1 A ◦ ⋆ ◦ 0.1166(+12
−8 ) Q-Q̄ potential 45

Bazavov 12 [70] 2+1 A ◦ ◦ ◦ 0.1156(+21
−22) Q-Q̄ potential 45

HPQCD 10 [91] 2+1 A ◦ ⋆ ◦ 0.1183(7) current two points 48
HPQCD 10 [91] 2+1 A ◦ ⋆ ⋆ 0.1184(6) Wilson loops 47
JLQCD 10 [79] 2+1 A ¥ ¥ ¥ 0.1118(3)(+16

−17) vacuum polarization 46

PACS-CS 09A [53] 2+1 A ⋆ ⋆ ◦ 0.118(3)# Schrödinger functional 44
Maltman 08 [92] 2+1 A ◦ ◦ ⋆ 0.1192(11) Wilson loops 47
HPQCD 08B [99] 2+1 A ¥ ¥ ¥ 0.1174(12) current two points 48
HPQCD 08A [83] 2+1 A ◦ ⋆ ⋆ 0.1183(8) Wilson loops 47
HPQCD 05A [82] 2+1 A ◦ ◦ ◦ 0.1170(12) Wilson loops 47

QCDSF/UKQCD 05 [93] 0, 2 → 3 A ⋆ ¥ ⋆ 0.112(1)(2) Wilson loops 47
Boucaud 01B [116] 2 → 3 A ◦ ◦ ¥ 0.113(3)(4) gluon-ghost vertex 49
SESAM 99 [89] 0, 2 → 3 A ⋆ ¥ ¥ 0.1118(17) Wilson loops 47
Wingate 95 [90] 0, 2 → 3 A ⋆ ¥ ¥ 0.107(5) Wilson loops 47
Davies 94 [88] 0, 2 → 3 A ⋆ ¥ ¥ 0.115(2) Wilson loops 47
Aoki 94 [87] 2 → 3 A ⋆ ¥ ¥ 0.108(5)(4) Wilson loops 47
El-Khadra 92 [86] 0 → 3 A ⋆ ¥ ◦ 0.106(4) Wilson loops 47

# Result with a linear continuum extrapolation in a.

Table 50: Results for αMS(MZ). Nf = 3 results are matched at the charm and bottom
thresholds and scaled to MZ to obtain the Nf = 5 result. The arrows in the Nf column
indicates which Nf (Nf = 0, 2 or a combination of both) were used to first extrapolate to
Nf = 3 or estimate the Nf = 3 value through a model/assumption. The exact procedures
used vary and are given in the various papers.

the conversion from Nf = 3 or Nf = 4 to Nf = 5 is made by matching the coupling constant
at the charm and bottom quark thresholds and using the scale as determined or used by the
authors. For Nf = 0, 2 the results for αMS in the summary table come from evaluations of
αMS at a relatively low scale and are extrapolated in Nf to Nf = 3.

As can be seen from the tables and figures, at present there are several computations satis-
fying the criteria to be included in the FLAG average. Since FLAG 13 two new computations

of α
(5)

MS
(MZ), Bazavov 14 [10] and HPQCD 14A [12], pass all our criteria with a ◦. We note

that none of those calculations of α
(5)

MS
(MZ) satisfy all of our more stringent criteria: a ⋆ for
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Figure 32: r0ΛMS estimates for Nf = 0, 2, 3, 4 flavours. Full green squares are used in our
final ranges, pale green squares also indicate that there are no red squares in the colour coding
but the computations were superseded by later more complete ones or not published, while
red open squares mean that there is at least one red square in the colour coding.

the renormalization scale, perturbative behaviour and continuum extrapolation. The results,
however, are obtained from four different methods that have different associated systematics,
and agree quite well within the stated uncertainties.

9.9.2 Our range for α
(5)

MS

We now explain the determination of our range. We only include those results without a
red tag and that are published in a refereed journal. We also do not include any numbers
which were obtained by extrapolating from theories with less than three flavours. There is
no real basis for such extrapolations; rather they use ad hoc assumptions on the low-energy
behaviour of the theories. One also notices from the published results that the estimated
numbers are quite significantly below those with at least 2+1 flavours.
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Figure 33: α
(5)

MS
(MZ), the coupling constant in the MS scheme at the Z mass. The results

labeled Nf = 0, 2 use estimates for Nf = 3 obtained by first extrapolating in Nf from
Nf = 0, 2 results. Since this is not a theoretically justified procedure, these are not included
in our final estimate and are thus given a red symbol. However, they are shown to indicate
the progress made since these early calculations. The PDG entry indicates the outcome of
their analysis excluding lattice results (see section 9.9.4).

A general issue with most recent determinations of αMS, both lattice and nonlattice, is
that they are dominated by perturbative truncation errors, which are difficult to estimate.
Further, all results discussed here except for those of Secs. 9.3, 9.6 are based on extractions of
αMS that are largely influenced by data with αeff ≥ 0.3. At smaller αs the momentum scale
µ quickly is at or above a−1. We have included computations using aµ up to 1.5 and αeff

up to 0.4, but one would ideally like to be significantly below that. Accordingly we choose
at this stage to estimate the error ranges in a conservative manner, and not simply perform
weighted averages with the individual errors estimated by each group.

Many of the methods have thus far only been applied by a single collaboration, and with
simulation parameters that could still be improved. We therefore think that the following
aspects of the individual calculations are important to keep in mind, and look forward to
additional clarification and/or corroboration in the future.

• The potential computations Brambilla 10 [72], ETM 11C [71] and Bazavov 12 [70] give
evidence that they have reached distances where perturbation theory can be used. However,
in addition to Λ, a scale is introduced into the perturbative prediction by the process of
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subtracting the renormalon contribution. This subtraction is avoided in Bazavov 14 [10] by
using the force and again agreement with perturbative running is reported. The extractions
of Λ are dominated by data with αeff ≥ 0.3. In contrast, Ref. [74], which studies the force
instead of the potential and therefore does not need a renormalon subtraction, finds that
significantly smaller lattice spacings would be needed in order for perturbation theory to be
reliable in a region of µ = 1/r where discretization errors are controlled. Further study is still
needed to clarify the situation.

• In the determination of αs from observables at the lattice spacing scale, there is an interplay
of higher-order perturbative terms and lattice artefacts. In HPQCD 05A [82], HPQCD 08A
[83] and Maltman 08 [92] both lattice artifacts (which are power corrections in this approach)
and higher-order perturbative terms are fitted. We note that, Maltman 08 [92] and HPQCD
08A [83] analyze largely the same data set but use different versions of the perturbative
expansion and treatments of nonperturbative terms. After adjusting for the slightly different
lattice scales used, the values of αMS(MZ) differ by 0.0004 to 0.0008 for the three quantities
considered. In fact the largest of these differences (0.0008) comes from a tadpole-improved
loop, which is expected to be best behaved perturbatively.

• Other computations with very small errors are HPQCD 10 [91] and HPQCD 14A [12],
where correlation functions of heavy quarks are used to construct short-distance quantities.
Due to the large quark masses needed to reach the region of small coupling, considerable
discretization errors are present, see Fig. 31. These are treated by fits to the perturbative
running (a 5-loop running αMS with a fitted 5-loop coefficient in the β-function is used) with
high-order terms in a double expansion in a2Λ2 and a2m2

h supplemented by priors which limit
the size of the coefficients. The priors play an especially important role in these fits given
the much larger number of fit parameters than data points. We note, however, that the size
of the coefficients does not prevent high-order terms from contributing significantly, since the
data includes values of amp/2 that are rather close to 1.

As previously mentioned α
(5)

MS
(MZ) is summarized in Tab. 50 and Fig. 33. A number of

calculations that include at least the effect of the strange quark make up our final estimate.
These are Bazavov 14 [10], HPQCD 14A [12], HPQCD 10 [91] (Wilson loops and current
two-point correlators), PACS-CS 09A [53], Maltman 08 [92] while HPQCD 08A/05A [82, 83]
and Bazavov 12 [70] have been superseded by more recent calculations. We obtain the central
value for our range,

α
(5)

MS
(MZ) = 0.1182(12) , (276)

from the weighted average of the six results.9 Of the results that enter our range, those
from Wilson loops (HPQCD 10 [91], and Maltman 08 [92]) and current two-point correlators
(HPQCD 10 [91]) presently have the smallest quoted errors. We have just listed reasons to
be careful in estimating the present overall uncertainty. We therefore take a larger range

for α
(5)

MS
(MZ) than one would obtain from the weighted average, or even from the most

precise individual calculation. We arrive at its value as follows. We make a conservative
estimate of the perturbative uncertainty in the calculation of αs from small Wilson loops.
One approach for making such an estimate would be to take the largest of the differences
between the calculations of Maltman 08 [92] and HPQCD 08A [83], 0.0008, which comes from
the quantity computed by both groups that is expected to be best behaved perturbatively.

9We have symmetrized the asymmetric error bars of Bazavov 14 [10] to 0.1166(10) in taking the average.
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This is somewhat larger than some of the estimates in the individual papers. Our choice is
instead to take an estimate of the perturbative truncation error as the overall uncertainty.
As explained in Sec. 9.6 the first unknown coefficient in the perturbative series was estimated

in the fits to be |c4/c1| ≈ 2. Using it in Eqs. (266,267) 10 yields ∆α
(5)

MS
(MZ) = 0.0012. This

is larger than the estimate of 0.0008 above and is what we adopt as the uncertainty of the
Wilson loop results. The second number with small errors entering the average comes from
the analysis of moments of heavy quark correlators. Here an independent estimate of the
uncertainty due to the fit to the a-dependence (see Fig. 31) is much more difficult to make;
as discussed above, and in the absence of confirmation by other groups, we are not yet ready
to use the result of HPQCD 10 [91] from the analysis of moments to reduce the size of our
range. Thus the overall size of the range is determined by our estimate of the uncertainty

of α
(5)

MS
(MZ) from Wilson loops. It is further reassuring to see that almost all central values

that qualify for averaging are within the so-determined range.

The range for α
(5)

MS
(MZ) presented here is based on results with rather different systematics

(apart from the matching across the charm threshold). We therefore believe that the true
value is quite likely to lie within this range.

We emphasize once more that all computations which enter this range rely on a perturba-
tive inclusion of the charm and beauty quarks. While perturbation theory for the matching
of ḡ2Nf

and ḡ2Nf−1 looks very well behaved even at the mass of the charm, this scale is rather
low and we have no accurate information about the precision of perturbation theory. Non-
perturbative studies are not yet precise enough [137]. However, it seems unlikely that the
associated uncertainty is comparable with the present errors. With future improved precision,
this will become a relevant issue. Note that this uncertainty is also present in some of the
phenomenological determinations, in particular from τ decays.

9.9.3 Ranges for [r0Λ]
(Nf ) and ΛMS

In the present situation, we give ranges for [r0Λ]
(Nf ) and ΛMS, discussing their determination

case by case. We include results withNf < 3 because it is interesting to see theNf -dependence
of the connection of low- and high-energy QCD. This aids our understanding of the field
theory and helps in finding possible ways to tackle it beyond the lattice approach. It is also
of interest in providing an impression on the size of the vacuum polarization effects of quarks,
in particular with an eye on the still difficult-to-treat heavier charm and beauty quarks. Even
if this information is rather qualitative, it may be valuable, given that it is of a completely
nonperturbative nature. We emphasize that results for [r0Λ]

(0) and [r0Λ]
(2) are not meant to

be used in phenomenology.
For Nf = 2+1+1, we presently do not quote a range as there is a single result: HPQCD

14A [12] found [r0Λ]
(4) = 0.70(3).

For Nf = 2 + 1, we take as a central value the weighted average of Bazavov 14 [10],
HPQCD 10 [91] (Wilson loops and current two-point correlators), PACS-CS 09A [53] and
Maltman 08 [92]. Since the uncertainty in r0 is small compared to that of Λ, we can directly
propagate the error from Eq. (276) and arrive at

[r0ΛMS]
(3) = 0.80(5) . (277)

10More precisely, we use α
(3)

MS
(5GeV) = 0.203 corresponding to Eq. (278) and α

(5)

MS
(MZ) = 0.1182 in

Eqs. (266,267).
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It is in good agreement with all 2+1 results without red tags. In physical units, using
r0 = 0.472 fm and neglecting its error, this means

Λ
(3)

MS
= 336(19)MeV . (278)

For Nf = 2, at present there is one computation with a ⋆ rating for all criteria, ALPHA
12 [29]. We adopt it as our central value and enlarge the error to cover the central values
of the other three results with filled green boxes. This results in an asymmetric error. Our
range is unchanged as compared to FLAG 13,

[r0ΛMS]
(2) = 0.79(+ 5

−13) , (279)

and in physical units, using r0 = 0.472fm,

Λ
(2)

MS
= 330(+21

−54)MeV . (280)

A weighted average of the four eligible numbers would yield [r0ΛMS]
(2) = 0.709(22), not

covering the best result and in particular leading to a smaller error than we feel is justified,
given the issues discussed previously in Sec. 9.4.2 (Karbstein 14 [9], ETM 11C [71]) and
Sec. 9.8.2 (ETM 10F [126]). Thus we believe that our estimate is a conservative choice; the
low value of ETM 11C [71] leads to a large downward error. We hope that future work will
improve the situation.

For Nf = 0 we take into account ALPHA 98 [56], QCDSF/UKQCD 05 [93], and Bram-
billa 10 [72] for forming a range. We exclude the older estimates shown in the graph which
have a limited control of the systematic errors due to power law corrections and discretization
errors.11 None of the computations have a full set of ⋆ and has P for publication status.
Taking a weighted average of the three numbers, we obtain [r0ΛMS]

(0) = 0.615(5), dominated
by the QCDSF/UKQCD 05 [93] result.

Since we are not yet convinced that such a small uncertainty has been reached, we prefer
to presently take a range which encompasses all four central values and whose uncertainty
comes close to our estimate of the perturbative error in QCDSF/UKQCD 05 [93]: based on
|c4/c1| ≈ 2 as before, we find ∆[r0ΛMS]

(0) = 0.018. We then have

[r0ΛMS]
(0) = 0.62(2) . (281)

Converting to physical units, again using r0 = 0.472 fm yields

Λ
(0)

MS
= 260(7)MeV . (282)

While the conversion of the Λ parameter to physical units is quite unambiguous for Nf = 2+1,
our choice of r0 = 0.472 fm also for smaller numbers of flavour amounts to a convention, in
particular for Nf = 0. Indeed, in the Tabs. 44–49 somewhat different numbers in MeV are
found.

How sure are we about our ranges for [r0ΛMS]
(Nf )? In one case we have a result, Eq. (279)

which easily passes our criteria, in another one (Eq. (281)) we have three compatible results
which are close to that quality and agree. For Nf = 2+1 the range (Eq. (277)) takes account
of results with rather different systematics. We therefore find it difficult to imagine that the
ranges could be violated by much.

11We have assigned a ◦ for the continuum limit, in Boucaud 00A [131], 00B [130], 01A [129], Soto 01
[128] but these results are from lattices of a very small physical size with finite-size effects that are not easily
quantified.
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9.9.4 Conclusions

With the present results our range for the strong coupling is (repeating Eq. (276))

α
(5)

MS
(MZ) = 0.1182(12) Refs. [10, 12, 53, 91, 92],

and the associated Λ parameter

Λ
(5)

MS
= 211(14) MeV Refs. [10, 12, 53, 91, 92]. (283)

These have changed little compared to the previous FLAG review. As can be seen from
Fig. 33, when surveying the green data points, the individual lattice results agree within their
quoted errors. Furthermore those points are based on different methods for determining αs,
each with its own difficulties and limitations. Thus the overall consistency of the lattice αs

results engenders confidence in our range.
It is interesting to compare to the new Particle Data Group world average, which appeared

in February 2016 [4]. The PDG performs their averages, both of lattice determinations and of
different categories of phenomenological determinations of αs, in a way differing significantly
from how we determine our range. They perform an unweighted average of the mean values.
As its error they use the average of the quoted errors of the different determinations that went
into the average. This procedure leads to larger final uncertainties than the one used in the
previous edition [5]. When one applies this method to the numbers entering Eq. (276), i.e.

the ones satisfying our criteria, one obtains α
(5)

MS
(MZ) = 0.1181(12) . This number is close to

our result Eq. (276). It differs a little from the value quoted by the PDG since in a couple of
cases we used updated results and because not all determinations entering the PDG average
satisfy our citeria. For comparison, the PDG number for lattice results is 0.1187(12), and
their average of all phenomenological results is 0.1175(17).

Our range for the lattice determination of αMS(MZ) in Eq. (276) is in excellent agree-
ment with the PDG nonlattice average Eq. (232). This is an excellent check for the subtle
interplay of theory, phenomenology and experiments in the nonlattice determinations. The
work done on the lattice provides an entirely independent determination, with negligible ex-
perimental uncertainty, which reaches a better precision even with our conservative estimate
of its uncertainty.

We finish by commenting on perspectives for the future. In the next few years we anticipate
that a growing number of lattice calculations of αs from different quantities and by different
collaborations will enable increasingly precise determinations, coupled with stringent cross-
checks. The determination of αs from observables at the lattice spacing scale may improve due
to a further reduction of the lattice spacing. This reduces αeff and thus the dominating error
in αMS as long as perturbative results for the simulated action are available to high order.
Schrödinger functional methods for Nf = 2+1 will certainly reach the precision of the present
Nf = 2 results soon, as this just requires an application of the presently known techniques.
Furthermore, we may expect a significant reduction of errors due to new definitions of running
couplings [57, 58] using the Yang Mills gradient flow [13]. Factors of two and more in precision
are certainly possible. At this point it will then also be necessary to include the charm quark
in the computations such that the perturbative matching of Nf = 2+1 and 2+1+1 theories
at the charm quark threshold is avoided. First generation Nf = 2 + 1 + 1 simulations are
presently being carried out.
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