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6 Kaon mixing

The mixing of neutral pseudoscalar mesons plays an important role in the understanding of
the physics of CP violation. In this section we discuss K0 − K̄0 oscillations, which probe the
physics of indirect CP violation. Extensive reviews on the subject can be found in Refs. [1–3].
For the most part we shall focus on kaon mixing in the SM. The case of Beyond-the-Standard-
Model (BSM) contributions is discussed in section 6.3.

6.1 Indirect CP violation and ǫK in the SM

Indirect CP violation arises in KL → ππ transitions through the decay of the CP = +1
component of KL into two pions (which are also in a CP = +1 state). Its measure is defined
as

ǫK =
A[KL → (ππ)I=0]

A[KS → (ππ)I=0]
, (99)

with the final state having total isospin zero. The parameter ǫK may also be expressed in
terms of K0 − K̄0 oscillations. In particular, to lowest order in the electroweak theory, the
contribution to these oscillations arises from so-called box diagrams, in which two W bosons
and two “up-type” quarks (i.e. up, charm, top) are exchanged between the constituent down
and strange quarks of the K mesons. The loop integration of the box diagrams can be
performed exactly. In the limit of vanishing external momenta and external quark masses,
the result can be identified with an effective four-fermion interaction, expressed in terms of
the “effective Hamiltonian”

H∆S=2
eff =

G2
FM

2
W

16π2
F0Q∆S=2 + h.c. . (100)

In this expression, GF is the Fermi coupling, MW the W -boson mass, and

Q∆S=2 = [s̄γµ(1− γ5)d] [s̄γµ(1− γ5)d] ≡ OVV+AA −OVA+AV , (101)

is a dimension-six, four-fermion operator. The function F0 is given by

F0 = λ2
cS0(xc) + λ2

tS0(xt) + 2λcλtS0(xc, xt) , (102)

where λa = V ∗
asVad, and a = c , t denotes a flavour index. The quantities S0(xc), S0(xt) and

S0(xc, xt) with xc = m2
c/M

2
W, xt = m2

t /M
2
W are the Inami-Lim functions [4], which express

the basic electroweak loop contributions without QCD corrections. The contribution of the
up quark, which is taken to be massless in this approach, has been taken into account by
imposing the unitarity constraint λu + λc + λt = 0.

When strong interactions are included, ∆S = 2 transitions can no longer be discussed at
the quark level. Instead, the effective Hamiltonian must be considered between mesonic initial
and final states. Since the strong coupling is large at typical hadronic scales, the resulting
weak matrix element cannot be calculated in perturbation theory. The operator product
expansion (OPE) does, however, factorize long- and short- distance effects. For energy scales
below the charm threshold, the K0 − K̄0 transition amplitude of the effective Hamiltonian
can be expressed as

〈K̄0|H∆S=2
eff |K0〉 =

G2
FM

2
W

16π2

[

λ2
cS0(xc)η1 + λ2

tS0(xt)η2 + 2λcλtS0(xc, xt)η3

]

×
(

ḡ(µ)2

4π

)−γ0/(2β0)

exp

{
∫ ḡ(µ)

0
dg

(

γ(g)

β(g)
+

γ0
β0g

)}

〈K̄0|Q∆S=2
R (µ)|K0〉 + h.c. , (103)
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where ḡ(µ) and Q∆S=2
R (µ) are the renormalized gauge coupling and four-fermion operator in

some renormalization scheme. The factors η1, η2 and η3 depend on the renormalized coupling
ḡ, evaluated at the various flavour thresholdsmt,mb,mc andMW, as required by the OPE and
RG-running procedure that separate high- and low-energy contributions. Explicit expressions
can be found in Refs. [2] and references therein, except that η1 and η3 have been recently
calculated to NNLO in Refs. [5] and [6], respectively. We follow the same conventions for the
RG equations as in Ref. [2]. Thus the Callan-Symanzik function and the anomalous dimension
γ(ḡ) of Q∆S=2 are defined by

dḡ

d lnµ
= β(ḡ) ,

dQ∆S=2
R

d lnµ
= −γ(ḡ)Q∆S=2

R , (104)

with perturbative expansions

β(g) = −β0
g3

(4π)2
− β1

g5

(4π)4
− · · · (105)

γ(g) = γ0
g2

(4π)2
+ γ1

g4

(4π)4
+ · · · .

We stress that β0, β1 and γ0 are universal, i.e. scheme independent. K0 − K̄0 mixing is
usually considered in the naive dimensional regularization (NDR) scheme of MS, and below
we specify the perturbative coefficient γ1 in that scheme:

β0 =

{

11

3
N − 2

3
Nf

}

, β1 =

{

34

3
N2 −Nf

(

13

3
N − 1

N

)}

, (106)

γ0 =
6(N − 1)

N
, γ1 =

N − 1

2N

{

−21 +
57

N
− 19

3
N +

4

3
Nf

}

.

Note that for QCD the above expressions must be evaluated for N = 3 colours, while Nf

denotes the number of active quark flavours. As already stated, Eq. (103) is valid at scales
below the charm threshold, after all heavier flavours have been integrated out, i.e. Nf = 3.

In Eq. (103), the terms proportional to η1, η2 and η3, multiplied by the contributions
containing ḡ(µ)2, correspond to the Wilson coefficient of the OPE, computed in perturbation
theory. Its dependence on the renormalization scheme and scale µ is canceled by that of the
weak matrix element 〈K̄0|Q∆S=2

R (µ)|K0〉. The latter corresponds to the long-distance effects
of the effective Hamiltonian and must be computed nonperturbatively. For historical, as well
as technical reasons, it is convenient to express it in terms of the B parameter BK, defined as

BK(µ) =

〈

K̄0
∣

∣Q∆S=2
R (µ)

∣

∣K0
〉

8
3f

2
Km

2
K

. (107)

The four-quark operator Q∆S=2(µ) is renormalized at scale µ in some regularization scheme,
for instance, NDR-MS. Assuming that BK(µ) and the anomalous dimension γ(g) are both
known in that scheme, the renormalization group independent (RGI) B parameter B̂K is
related to BK(µ) by the exact formula

B̂K =

(

ḡ(µ)2

4π

)−γ0/(2β0)

exp

{
∫ ḡ(µ)

0
dg

(

γ(g)

β(g)
+

γ0
β0g

)}

BK(µ) . (108)
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At NLO in perturbation theory the above reduces to

B̂K =

(

ḡ(µ)2

4π

)−γ0/(2β0){

1 +
ḡ(µ)2

(4π)2

[

β1γ0 − β0γ1
2β2

0

]}

BK(µ) . (109)

To this order, this is the scale-independent product of all µ-dependent quantities in Eq. (103).
Lattice QCD calculations provide results for BK(µ). These results are, however, usually

obtained in intermediate schemes other than the continuum MS scheme used to calculate
the Wilson coefficients appearing in Eq. (103). Examples of intermediate schemes are the
RI/MOM scheme [7] (also dubbed the “Rome-Southampton method”) and the Schrödinger
functional (SF) scheme [8]. These schemes are used as they allow a nonperturbative renor-
malization of the four-fermion operator, using an auxiliary lattice simulation. This allows
BK(µ) to be calculated with percent-level accuracy, as described below.

In order to make contact with phenomenology, however, and in particular to use the
results presented above, one must convert from the intermediate scheme to the MS scheme
or to the RGI quantity B̂K. This conversion relies on one or two-loop perturbative matching
calculations, the truncation errors in which are, for many recent calculations, the dominant
source of error in B̂K (see, for instance, Refs. [9–13]). While this scheme-conversion error is
not, strictly speaking, an error of the lattice calculation itself, it must be included in results
for the quantities of phenomenological interest, namely BK(MS, 2GeV) and B̂K. We note
that this error can be minimized by matching between the intermediate scheme and MS at as
large a scale µ as possible (so that the coupling which determines the rate of convergence is
minimized). Recent calculations have pushed the matching µ up to the range 3−3.5GeV. This
is possible because of the use of nonperturbative RG running determined on the lattice [10,
12, 14]. The Schrödinger functional offers the possibility to run nonperturbatively to scales
µ ∼ MW where the truncation error can be safely neglected. However, so far this has been
applied only for two flavours of Wilson quarks [15].

Perturbative truncation errors in Eq. (103) also affect the Wilson coefficients η1, η2 and η3.
It turns out that the largest uncertainty arises from the charm quark contribution η1 =
1.87(76) [5]. Although it is now calculated at NNLO, the series shows poor convergence. The
net effect is that the uncertainty in η1 is larger than that in present lattice calculations of
BK .

In the Standard Model, ǫK receives contributions from: 1) short distance physics given
by ∆S = 2 “box diagrams” involving W± bosons and u, c and t quarks; 2) long distance
physics from light hadrons contributing to the imaginary part of the dispersive amplitude
M12 used in the two component description of K0 − K̄0 mixing; 3) the imaginary part of the
absorptive amplitude Γ12 from K0 − K̄0 mixing; and 4) Im(A0)/Re(A0). The terms in this
decomposition can vary with phase conventions. It is common to represent contribution 1 by

Im(MSD
12 ) ≡ 1

2mK
Im[〈K̄0|H∆S=2

eff |K0〉]∗ (110)

and contribution 2 by MLD
12 . Contribution 3 can be related to Im(A0)/Re(A0), yielding [3, 16–

19]

ǫK = exp(iφǫ) sin(φǫ)

[

Im(MSD
12 )

∆MK
+

Im(MLD
12 )

∆MK
+

Im(A0)

Re(A0)

]

(111)

for λu real and positive; the phase of ǫK is given by

φǫ = arctan
∆MK

∆ΓK/2
. (112)
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The quantities ∆MK and ∆ΓK are the mass and decay width differences between long- and
short-lived neutral kaons, while A0 is the amplitude of the kaon decay into an isospin-0 two
pion state. Experimentally known values of the above quantities are [20]:

|ǫK | = 2.228(11)× 10−3 ,

φǫ = 43.52(5)◦ , (113)

∆MK = 3.4839(59)× 10−12MeV ,

∆ΓK = 7.3382(33)× 10−15GeV .

A recent analytical estimate of the contributions of MLD
12 (Refs. [18, 19]) leads to

ǫK = exp(iφǫ) sin(φǫ)
[ Im(MSD

12 )

∆MK
+ ρ

Im(A0)

Re(A0)

]

. (114)

A phenomenological estimate for ξ = Im(A0)/Re(A0) can be determined using the experi-
mental value of ǫ′/ǫ [19]

ξ = −6.0(1.5) · 10−4
√
2|ǫK | = −1.9(5) · 10−4. (115)

A more precise result has been obtained from the ratio of amplitudes Im(A2)/Re(A2) com-
puted in lattice QCD [21] (where A2 denotes the ∆I = 3/2 decay amplitude for K → ππ):

ξ = −1.6(2) · 10−4. (116)

The value of ξ can then be combined with a χPT-based estimate for the long-range contribu-
tion, i.e. ρ = 0.6(3) [19]. Overall, the combination ρξ leads to a suppression of |ǫK | by 6(2)%
relative to the naive estimate (i.e. the first term in square brackets in Eq. (111)), regardless
of whether the phenomenological or lattice estimate for ξ is used. The uncertainty in the
suppression factor is dominated by the error on ρ. Although this is a small correction, we
note that its contribution to the error of ǫK is larger than that arising from the value of BK

reported below.
Efforts are under way to compute both the real and imaginary long-distance contribution

to the KL − KS mass difference in lattice QCD [22–24]. However, the results are not yet
precise enough to improve the accuracy in the determination of the parameter ρ.

6.2 Lattice computation of BK

Lattice calculations of BK are affected by the same systematic effects discussed in previous
sections. However, the issue of renormalization merits special attention. The reason is that
the multiplicative renormalizability of the relevant operator Q∆S=2 is lost once the regular-
ized QCD action ceases to be invariant under chiral transformations. For Wilson fermions,
Q∆S=2 mixes with four additional dimension-six operators, which belong to different repre-
sentations of the chiral group, with mixing coefficients that are finite functions of the gauge
coupling. This complicated renormalization pattern was identified as the main source of sys-
tematic error in earlier, mostly quenched calculations of BK with Wilson quarks. It can be
bypassed via the implementation of specifically designed methods, which are either based on
Ward identities [25] or on a modification of the Wilson quark action, known as twisted mass
QCD [26, 27].
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An advantage of staggered fermions is the presence of a remnant U(1) chiral symmetry.
However, at nonvanishing lattice spacing, the symmetry among the extra unphysical degrees
of freedom (tastes) is broken. As a result, mixing with other dimension-six operators cannot
be avoided in the staggered formulation, which complicates the determination of the B pa-
rameter. The effects of the broken taste symmetry are usually treated via an effective field
theory, such as staggered Chiral Perturbation Theory (SχPT).

Fermionic lattice actions based on the Ginsparg-Wilson relation [28] are invariant under
the chiral group, and hence four-quark operators such as Q∆S=2 renormalize multiplicatively.
However, depending on the particular formulation of Ginsparg-Wilson fermions, residual chi-
ral symmetry breaking effects may be present in actual calculations. For instance, in the case
of domain wall fermions, the finiteness of the extra 5th dimension implies that the decoupling
of modes with different chirality is not exact, which produces a residual nonzero quark mass in
the chiral limit. Whether or not a significant mixing with dimension-six operators is induced
as well must be investigated on a case-by-case basis.

Recent lattice QCD calculations of BK have been performed with Nf = 2+1+ 1 dynam-
ical quarks [29], and we want to mention a few conceptual issues that arise in this context.
As described in section 6.1, kaon mixing is expressed in terms of an effective four-quark in-
teraction Q∆S=2, considered below the charm threshold. When the matrix element of Q∆S=2

is evaluated in a theory that contains a dynamical charm quark, the resulting estimate for
BK must then be matched to the three-flavour theory which underlies the effective four-
quark interaction.1 In general, the matching of 2+1-flavour QCD with the theory containing
2 + 1+ 1 flavours of sea quarks below the charm threshold can be accomplished by adjusting
the coupling and quark masses of the Nf = 2 + 1 theory so that the two theories match
at energies E < mc. The corrections associated with this matching are of order (E/mc)

2,
since the subleading operators have dimension eight [30]. When the kaon mixing amplitude
is considered, the matching also involves the relation between the relevant box graphs and
the effective four-quark operator. In this case, corrections of order (E/mc)

2 arise not only
from the charm quarks in the sea, but also from the valence sector, since the charm quark
propagates in the box diagrams. One expects that the sea quark effects are subdominant, as
they are suppressed by powers of αs. We note that the original derivation of the effective
four-quark interaction is valid up to corrections of order (E/mc)

2. While the kaon mixing
amplitudes evaluated in the Nf = 2+ 1 and 2+ 1+ 1 theories are thus subject to corrections
of the same order in E/mc as the derivation of the conventional four-quark interaction, the
general conceptual issue regarding the calculation of BK in QCD with Nf = 2+1+1 flavours
should be addressed in detail in future calculations.

Another issue in this context is how the lattice scale and the physical values of the quark
masses are determined in the 2 + 1 and 2 + 1 + 1 flavour theories. Here it is important
to consider in which way the quantities used to fix the bare parameters are affected by a
dynamical charm quark. Apart from a brief discussion in Ref. [29], these issues have not
been fully worked out in the literature, but these kinds of mismatches were seen in simple
lattice-QCD observables as quenched calculations gave way to Nf = 2 and then 2 + 1 flavour
results. Given the scale of the charm quark mass relative to the scale of BK , we expect these
errors to be modest, but a more quantitative understanding is needed as statistical errors on
BK are reduced. Within this review we will not discuss this issue further.

Below we focus on recent results for BK, obtained for Nf = 2, 2+ 1 and 2+ 1+ 1 flavours

1We thank Martin Lüscher for an interesting discussion on this issue.
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of dynamical quarks. A compilation of results is shown in Tabs. 25 and 26, as well as Fig. 15.
An overview of the quality of systematic error studies is represented by the colour coded
entries in Tabs. 25 and 26. In Appendix B.5 we gather the simulation details and results from
different collaborations, the values of the most relevant lattice parameters, and comparative
tables on the various estimates of systematic errors.

Some of the groups whose results are listed in Tabs. 25 and 26 do not quote results for
both BK(MS, 2GeV) – which we denote by the shorthand BK from now on – and B̂K. This
concerns Refs. [31–33] for Nf = 2, Refs.[9, 10, 12, 13] for 2 + 1 and Ref. [29] for 2 + 1 + 1
flavours. In these cases we perform the conversion ourselves by evaluating the proportionality
factor in Eq. (109) at µ = 2GeV, using the following procedure: For Nf = 2 + 1 we use the
value αs(MZ) = 0.1185 from the 2014 edition of the PDG [20] and run it across the quark
thresholds at mb = 4.18GeV and mc = 1.275GeV, and then run up in the three-flavour
theory to µ = 2GeV. All running is done using the four-loop RG β-function. The resulting
value of αMS

s (2GeV) = 0.2967 is then used to evaluate B̂K/BK in perturbation theory at
NLO, which gives B̂K/BK = 1.369 in the three-flavour theory. This value of the conversion
factor has also been applied to the result computed in QCD with Nf = 2 + 1 + 1 flavours of
dynamical quarks [29].

In two-flavour QCD one can insert the updated nonperturbative estimate for the Λ param-
eter by the ALPHA Collaboration [34], i.e. Λ(2) = 310(20)MeV, into the NLO expressions for
αs. The resulting value of the perturbative conversion factor B̂K/BK for Nf = 2 is then equal
to 1.386. However, since the running coupling in the MS scheme enters at several stages in the
entire matching and running procedure, it is difficult to use this estimate of αs consistently
without a partial reanalysis of the data in Refs. [31–33]. We have therefore chosen to apply
the conversion factor of 1.369 not only to results obtained for Nf = 2 + 1 flavours but also

to the two-flavour theory (in cases where only one of B̂K and BK are quoted). We note that
the difference between 1.386 and 1.369 will produce an ambiguity of the order of 1%, which is
well below the overall uncertainties in Refs. [31, 32]. We have indicated explicitly in Tab. 26
in which way the conversion factor 1.369 has been applied to the results of Refs. [31–33].

Recent results for the kaon B parameter have been reported for Nf = 2+ 1 + 1 (ETM15
[29]), Nf = 2+1 (RBC/UKQCD14B [12], RBC/UKQCD16 [35], SWME13A [36], SWME14 [11],
SWME15A [13]) and Nf = 2 (ETM12D [33]). We briefly discuss the main features of these
calculations below.

The calculation by ETM15 [29] employs Osterwalder-Seiler valence quarks on twisted-
mass dynamical quark ensembles. Both valence and sea quarks are tuned to maximal twist.
This mixed action setup guarantees that the four-fermion matrix elements are automatically
O(a) improved and free of wrong chirality mixing effects. The calculation has been carried
out at three values of the lattice spacing (a ≃ 0.06 − 0.09 fm). Light pseudoscalar mass
values are in the range 210−450MeV. The spatial lattice sizes vary between 2.1 to 2.9 fm and
correspond toMπ,minL ≃ 3.2−3.5. Finite volume effects are investigated at the coarsest lattice
spacing by controlling the consistency of results obtained at two lattice volumes at 280MeV
for the light pseudoscalar mass. The determination of the bag parameter is performed using
simultaneous chiral and continuum fits. The renormalization factors have been evaluated
using the RI/MOM technique for Nf = 4 degenerate Wilson twisted-mass dynamical quark
gauge configurations generated for this purpose. In order to gain control over discretization
effects the evaluation of the renormalization factors has been carried out following two different
methods. The uncertainty from the RI computation is estimated at 2%. The conversion to
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MS produces an additional 0.6% of systematic error. The overall uncertainty for the bag
parameter is computed from a distribution of several results, each one of them corresponding
to a variant of the analysis procedure.

The collection of results from the SWME collaboration [11, 13, 36–38, 40] have all been
obtained using a mixed action, i.e. HYP-smeared valence staggered quarks on the Asq-
tad improved, rooted staggered MILC ensembles. For the latest set of results, labelled
SWME14, 15A [11, 13] an extended set of ensembles, comprising finer lattice spacings and a
smallest pion mass of 174MeV has been added to the calculation. The final estimate for BK

is obtained from a combined chiral and continuum extrapolation using the data computed for
the three finest lattice spacings. The dominant systematic error of 4.4% is associated with the
matching factor between the lattice and MS schemes. It has been computed in perturbation
theory at one loop, and its error was estimated assuming a missing two-loop matching term
of size 1× α(1/a)2, i.e. with no factors of 1/(4π) included. Different functional forms for the
chiral fits contribute another 2% to the error budget. It should also be noted that Bayesian
priors are used to constrain some of the coefficients in the chiral ansatz. The total systematic
error amounts to about 5%. Compared to the earlier calculations of SWME one finds that
“the overall error is only slightly reduced, but, more importantly, the methods of estimating
errors have been improved” [11].

The RBC and UKQCD Collaborations have updated their value for BK using Nf = 2+1
flavours of domain wall fermions [12]. Previous results came from ensembles at three different
lattice spacings with unitary pion masses in the range of 170 to 430MeV. The new work adds
an ensemble with essentially physical light and strange quark masses at two of the lattice
spacings, along with a third finer lattice with 370 MeV pion masses. This finer ensemble
provides an additional constraint on continuum extrapolations. Lattice spacings and quark
masses are determined via a combined continuum and chiral extrapolation to all ensembles.
With lattice spacings at hand, nonperturbative renormalization and nonperturbative step
scaling are used to find the renormalized value of BK at 3 GeV in the RI-SMOM(γµ, γµ)
and RI-SMOM(/q, /q) schemes for all of the ensembles. These BK values for each pion mass
are determined for the physical strange quark mass through valence strange quark interpola-
tions/extrapolations and dynamical strange quark mass reweighting. The light quark mass
dependence is then fit to SU(2) chiral perturbation theory. Because the new ensembles have
quark masses within a few percent of their physical values, the systematic error related to the
extrapolation to physical values is neglected. The new physical point ensembles have (5.5 fm)3

volumes, and chiral perturbation theory fits with and without finite volume corrections differ
by 10-20% of the statistical errors, so no finite volume error is quoted. The fits are dominated
by the physical point ensembles, which have small errors. Fits with BK normalized in both
RI-SMOM schemes are done, and the difference is used to estimate the systematic error due
to nonperturbative renormalization. In another recent paper [35], RBC/UKQCD reported a
determination of BK obtained as part of their study of kaon mixing in extensions of the SM.
While the procedure to determine BK are very similar to RBC/UKQCD14B, the calculation
in RBC/UKQCD16 [35] is based only on a subset of the ensembles studied in [12]. Therefore,
the result for BK reported in [35] can neither be considered an update of RBC/UKQCD14B,
nor an independent new result.

The Nf = 2 calculation described in ETM12D [33] uses a mixed action setup employing
twisted-mass dynamical quarks and Osterwalder-Seiler quarks in the valence, both tuned to
maximal twist. The work of ETM12D is an update of the calculation of ETM10A [32]. The
main addition is the inclusion of a fourth (superfine) lattice spacing (a ≃ 0.05 fm). Thus, the
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computation is performed at four values of the lattice spacing (a ≃ 0.05 − 0.1 fm), and the
lightest simulated value of the light pseudoscalar mass is about 280 MeV. Final results are
obtained with combined chiral and continuum fits. Finite volume effects are studied at one
value of the lattice spacing (a ≃ 0.08 fm), and it is found that results obtained on two lattice
volumes, namely for L = 2.2 and 2.9 fm atMπ ≈ 300MeV are in good agreement within errors.
The four- and two-fermion renormalization factors needed in the bag parameter evaluation
are computed nonperturbatively using the Rome-Southampton method. The systematic error
due to the matching of RI and MS schemes is estimated to be 2.5%.

We now describe our procedure for obtaining global averages. The rules of section 2.1
stipulate that results free of red tags and published in a refereed journal may enter an average.
Papers that at the time of writing are still unpublished but are obvious updates of earlier
published results can also be taken into account.

There is only one result for Nf = 2 + 1 + 1, computed by the ETM Collaboration [29].
Since it is free of red tags, it qualifies as the currently best global estimate, i.e.

Nf = 2 + 1 + 1 : B̂K = 0.717(18)(16) , BMS
K (2GeV) = 0.524(13)(12) Ref. [29]. (117)

The bulk of results for the kaon B parameter has been obtained for Nf = 2+1. As in the pre-
vious edition of the FLAG review [48] we include the results from SWME [11, 13, 36], despite
the fact that nonperturbative information on the renormalization factors is not available. In-
stead, the matching factor has been determined in perturbation theory at one loop, but with
a sufficiently conservative error of 4.4%. As described above, the result in RBC/UKQCD16
[35] cannot be considered an update of the earlier estimate in RBC/UKQCD14B, and hence
it is not included in the FLAG average.

Thus, for Nf = 2+1 our global average is based on the results of BMW11 [14], Laiho 11 [9],
RBC/UKQCD14B [12] and SWME15A [13]. The last three are the latest updates from a
series of calculations by the same collaborations. Our procedure is as follows: in a first step
statistical and systematic errors of each individual result for the RGI B parameter, B̂K, are
combined in quadrature. Next, a weighted average is computed from the set of results. For
the final error estimate we take correlations between different collaborations into account.
To this end we note that we consider the statistical and finite-volume errors of SWME15A
and Laiho 11 to be correlated, since both groups use the Asqtad ensembles generated by the
MILC Collaboration. Laiho 11 and RBC/UKQCD14B both use domain wall quarks in the
valence sector and also employ similar procedures for the nonperturbative determination of
matching factors. Hence, we treat the quoted renormalization and matching uncertainties by
the two groups as correlated. After constructing the global covariance matrix according to
Schmelling [49], we arrive at

Nf = 2 + 1 : B̂K = 0.7625(97) Refs. [9, 12–14], (118)

with χ2/d.o.f. = 0.675. After applying the NLO conversion factor B̂K/B
MS
K (2GeV) = 1.369,

this translates into

Nf = 2 + 1 : BMS
K (2GeV) = 0.5570(71) Refs. [9, 12–14]. (119)

These values and their uncertainties are very close to the global estimates quoted in the
previous edition of the FLAG review [48]. Note, however, that the statistical errors of each
calculation entering the global average have now been reduced to a level that makes them
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Figure 15: Recent unquenched lattice results for the RGI B parameter B̂K. The grey bands
indicate our global averages described in the text. For Nf = 2+ 1 + 1 and Nf = 2 the global
estimate coincide with the results by ETM12D and ETM10A, respectively.

statistically incompatible. It is only because of the relatively large systematic errors that the
weighted average produces a value of O(1) for the reduced χ2.

Passing over to describing the results computed for Nf = 2 flavours, we note that there is
only the set of results published in ETM12D [33] and ETM10A [32] that allow for an extensive
investigation of systematic uncertainties. We identify the result from ETM12D [33], which is
an update of ETM10A, with the currently best global estimate for two-flavour QCD, i.e.

Nf = 2 : B̂K = 0.727(22)(12), BMS
K (2GeV) = 0.531(16)(19) Ref. [33]. (120)

The result in the MS scheme has been obtained by applying the same conversion factor of
1.369 as in the three-flavour theory.

6.3 Kaon BSM B parameters

We now report on lattice results concerning the matrix elements of operators that encode
the effects of physics beyond the Standard Model (BSM) to the mixing of neutral kaons. In
this theoretical framework both the SM and BSM contributions add up to reproduce the
experimentally observed value of ǫK . Since BSM contributions involve heavy but unobserved
particles they are short-distance dominated. The effective Hamiltonian for generic ∆S = 2
processes including BSM contributions reads

H∆S=2
eff,BSM =

5
∑

i=1

Ci(µ)Qi(µ), (121)
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where Q1 is the four-quark operator of Eq. (101) that gives rise to the SM contribution to ǫK .
In the so-called SUSY basis introduced by Gabbiani et al. [50] the (parity-even) operators
Q2, . . . , Q5 read 2

Q2 =
(

s̄a(1− γ5)d
a
)(

s̄b(1− γ5)d
b
)

,

Q3 =
(

s̄a(1− γ5)d
b
)(

s̄b(1− γ5)d
a
)

,

Q4 =
(

s̄a(1− γ5)d
a
)(

s̄b(1 + γ5)d
b
)

,

Q5 =
(

s̄a(1− γ5)d
b
)(

s̄b(1 + γ5)d
a
)

, (122)

where a and b denote colour indices. In analogy to the case of BK one then defines the B
parameters of Q2, . . . , Q5 according to

Bi(µ) =

〈

K̄0 |Qi(µ)|K0
〉

Ni

〈

K̄0 |s̄γ5d| 0
〉

〈0 |s̄γ5d|K0〉 , i = 2, . . . , 5. (123)

The factors {N2, . . . , N5} are given by {−5/3, 1/3, 2, 2/3}, and it is understood that Bi(µ)
is specified in some renormalization scheme, such as MS or a variant of the regularization-
independent momentum subtraction (RI-MOM) scheme.

The SUSY basis has been adopted in Refs. [29, 33, 35, 51]. Alternatively, one can employ
the chiral basis of Buras, Misiak and Urban [52]. The SWME Collaboration prefers the latter,
since the anomalous dimension which enters the RG running has been calculated to two loops
in perturbation theory [52]. Results obtained in the chiral basis can be easily converted to
the SUSY basis via

BSUSY
3 = 1

2

(

5Bchiral
2 − 3Bchiral

3

)

. (124)

The remaining B parameters are the same in both bases. In the following we adopt the SUSY
basis and drop the superscript.

Older quenched results for the BSM B parameters can be found in Refs. [53–55]. Recent
estimates for B2, . . . , B5 have been reported for QCD with Nf = 2 (ETM12D [33]), Nf = 2+1
(RBC/UKQCD12E [51], SWME13A [36], SWME14C [56], SWME15A [13], RBC/UKQCD16
[35]) and Nf = 2 + 1 + 1 (ETM15 [29]) flavours of dynamical quarks. They are listed and
compared in Tab. 27 and Fig. 16. In general one finds that the BSM B parameters com-
puted by different collaborations do not show the same level of consistency as the SM kaon
mixing parameter BK discussed previously. The main features of the calculations reported
in the table and figure are identical to the case of BK discussed above. We note, in particu-
lar, that SWME perform the matching between rooted staggered quarks and the MS scheme
using perturbation theory at one loop, while RBC/UKQCD and ETMC employ nonperturba-
tive renormalization for domain wall and twisted-mass Wilson quarks, respectively. Control
over systematic uncertainties (chiral and continuum extrapolations, finite-volume effects) in
B2, . . . , B5 is expected to be at the same level as for BK, as far as the results by ETM12D,
ETM15 and SWME15A are concerned. The calculation by RBC/UKQCD12E has been per-
formed at a single value of the lattice spacing and a minimum pion mass of 290MeV. Thus,
the results do not benefit from the same improvements regarding control over the chiral and
continuum extrapolations as in the case of BK [12].

2Thanks to QCD parity invariance we can ignore three more dimension-six operators whose parity con-
serving parts coincide with the corresponding parity conserving contributions of the operators Q1, Q2 and
Q3.
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The RBC/UKQCD collaboration have recently extended their calculation of BSM B pa-
rameters [35] for Nf = 2 + 1, by considering two values of the lattice spacing, a ≃ 0.11
and 0.08 fm, employing ensembles generated using the Iwasaki gauge action and the Shamir
domain wall fermionic action. The lattice volumes in the RBC/UKQCD16 calculation are
243 × 64 × 16 for the coarse and 323 × 64 × 16 for the fine lattice spacing, while the lowest
simulated values for the pseudoscalar mass are about 340 MeV and 300 MeV, respectively. As
in the related calculation of BK (RBC/UKQCD 14B [12]) the renormalization of four-quark
operators was performed nonperturbatively in two RI-SMOM schemes, namely (/q, /q) and
(γµ, γµ), where the latter was used for the final estimates of B2, . . . , B5 quoted in ref. [35]. By
comparing the results obtained in the conventional RI-MOM and the two RI-SMOM schemes,
RBC/UKQCD16 report significant discrepancies for B4 and B5 in the MS scheme at the scale
of 3GeV, which amount up to 2.8σ in the case of B5. By contrast, the agreement for B2 and
B3 determined for different intermediate scheme is much better. Based on these findings they
claim that these discrepancies are due to uncontrolled systematics coming from the Goldstone
boson pole subtraction procedure that is needed in the RI-MOM scheme, while pole subtrac-
tion effects are much suppressed in RI-SMOM thanks to the fact that the latter is based on
non-exceptional momenta.

The findings by RBC/UKQCD 16 [35] provides evidence that the nonperturbative deter-
mination of the matching factors depends strongly on the details in the implementation of
the Rome-Southampton method. The use of nonexceptional momentum configurations in the
calculation of the vertex functions produces a significant modification of the renormalization
factors which affects the matching between MS and the intermediate momentum subtraction
scheme. This effect is most pronounced in B4 and B5. As a result, the estimates for B4 and
B5 from RBC/UKQCD16 are much closer to those of SWME15A. At the same time, the
results for B2 and B3 obtained by ETM 15, SWME 15A and RBC/UKQCD 16 are in good
agreement within errors.

A detailed look at the most recent calculations reported in ETM15 [29], SWME15A [13]
and RBC/UKQCD16 [35] reveals that cutoff effects appear to be larger for the BSM B pa-
rameters compared to BK . Depending on the details of the renormalization procedure and/or
the fit ansatz for the combined chiral and continuum extrapolation, the results obtained at
the coarsest lattice spacing differ by 15–30%. At the same time the available range of lat-
tice spacings is typically much reduced compared to the corresponding calculations of BK ,
as can be seen by comparing the quality criteria in Tables 25 and 27. Hence, the impact of
the renormalization procedure and the continuum limit on the BSM B parameters certainly
requires further investigation.

Finally we present our estimates for the BSM B parameters, quoted in the MS-scheme at
scale 3GeV. For Nf = 2 + 1 our estimate is given by the average between the results from
SWME15A and RBC/UKQCD16, i.e.

Nf = 2 + 1 : (125)

B2 = 0.502(14), B3 = 0.766(32), B4 = 0.926(19), B5 = 0.720(38), Refs. [13, 35].

For Nf = 2+1+1 and Nf = 2, our estimates coincide with the ones by ETM15 and ETM12D,
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respectively, since there is only one computation for each case. Thus we quote

Nf = 2 + 1 + 1 : (126)

B2 = 0.46(1)(3), B3 = 0.79(2)(4), B4 = 0.78(2)(4), B5 = 0.49(3)(3), Ref. [29],

Nf = 2 : (127)

B2 = 0.47(2)(1), B3 = 0.78(4)(2), B4 = 0.76(2)(2), B5 = 0.58(2)(2), Ref. [33].

Based on the above discussion on the effects of employing different intermediate momentum
subtraction schemes in the nonperturbative renormalization of the operators, the discrepancy
for B4 and B5 results between Nf = 2, 2 + 1+ 1 and Nf = 2+ 1 computations should not be
considered an effect associated with the number of dynamical flavours.
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Figure 16: Lattice results for the BSM B parameters defined in the MS scheme at a reference
scale of 3GeV, see Tab. 27.

12 Updated Dec. 2016

http://arxiv.org/abs/1607.00299


S. Aoki et al., Review of lattice results concerning low-energy particle physics, 1607.00299

Collaboration Ref. Nf pu
bl
ic
at
io
n
st
at
us

co
nt
in
uu
m

ex
tr
ap
ol
at
io
n

ch
ir
al
ex
tr
ap
ol
at
io
n

fin
it
e
vo
lu
m
e

re
no
rm

al
iz
at
io
n

ru
nn
in
g

BK(MS, 2GeV) B̂K

ETM 15 [29] 2+1+1 A ⋆ ◦ ◦ ⋆ a 0.524(13)(12) 0.717(18)(16)1

RBC/UKQCD 16 [35] 2+1 A ◦ ◦ ◦ ⋆ b 0.544(9)(13)3 0.744(13)(18)

SWME 15A [13] 2+1 A ⋆ ◦ ⋆ ◦‡
− 0.537(4)(26) 0.735(5)(36)2

RBC/UKQCD 14B [12] 2+1 A ⋆ ⋆ ◦ ⋆ b 0.5478(18)(110)3 0.7499(24)(150)

SWME 14 [11] 2+1 A ⋆ ◦ ⋆ ◦‡
− 0.5388(34)(266) 0.7379(47)(365)

SWME 13A [36] 2+1 A ⋆ ◦ ⋆ ◦‡
− 0.537(7)(24) 0.735(10)(33)

SWME 13 [37] 2+1 C ⋆ ◦ ⋆ ◦‡
− 0.539(3)(25) 0.738(5)(34)

RBC/UKQCD 12A [10] 2+1 A ◦ ⋆ ◦ ⋆ b 0.554(8)(14)3 0.758(11)(19)

Laiho 11 [9] 2+1 C ⋆ ◦ ◦ ⋆ − 0.5572(28)(150) 0.7628(38)(205)2

SWME 11A [38] 2+1 A ⋆ ◦ ◦ ◦‡
− 0.531(3)(27) 0.727(4)(38)

BMW 11 [14] 2+1 A ⋆ ⋆ ⋆ ⋆ c 0.5644(59)(58) 0.7727(81)(84)

RBC/UKQCD 10B [39] 2+1 A ◦ ◦ ⋆ ⋆ d 0.549(5)(26) 0.749(7)(26)

SWME 10 [40] 2+1 A ⋆ ◦ ◦ ◦ − 0.529(9)(32) 0.724(12)(43)

Aubin 09 [41] 2+1 A ◦ ◦ ◦ ⋆ − 0.527(6)(21) 0.724(8)(29)

RBC/UKQCD 07A, 08 [42, 43] 2+1 A ¥ ◦ ⋆ ⋆ − 0.524(10)(28) 0.720(13)(37)

HPQCD/UKQCD 06 [44] 2+1 A ¥ ◦∗
⋆ ¥ − 0.618(18)(135) 0.83(18)

‡ The renormalization is performed using perturbation theory at one loop, with a conservative estimate
of the uncertainty.

∗ This result has been obtained with only two “light” sea quark masses.

a BK is renormalized nonperturbatively at scales 1/a ∼ 2.2 − 3.3GeV in the Nf = 4 RI/MOM scheme
using two different lattice momentum scale intervals, the first around 1/a while the second around
3.5 GeV. The impact of the two ways to the final result is taken into account in the error budget.
Conversion to MS is at one-loop at 3 GeV.

b BK is renormalized nonperturbatively at a scale of 1.4 GeV in two RI/SMOM schemes for Nf = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. Conversion to MS is at
one-loop order at 3 GeV.

c BK is renormalized and run nonperturbatively to a scale of 3.4GeV in the RI/MOM scheme.
nonperturbative and NLO perturbative running agrees down to scales of 1.8GeV within statistical
uncertainties of about 2%.

d BK is renormalized nonperturbatively at a scale of 2GeV in two RI/SMOM schemes for Nf = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. Conversion to MS is at
one-loop order at 3 GeV.

1 BK(MS, 2GeV) and B̂K are related using the conversion factor 1.369 i.e. the one obtained with
Nf = 2 + 1.

2 B̂K is obtained from the estimate for BK(MS, 2GeV) using the conversion factor 1.369.
3 BK(MS, 2GeV) is obtained from the estimate for B̂K using the conversion factor 1.369.

Table 25: Results for the Kaon B parameter in QCD with Nf = 2 + 1 + 1 and Nf = 2 + 1
dynamical flavours, together with a summary of systematic errors. Any available information
about nonperturbative running is indicated in the column “running”, with details given at
the bottom of the table.
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BK(MS, 2GeV) B̂K

ETM 12D [33] 2 A ⋆ ◦ ◦ ⋆ e 0.531(16)(9) 0.727(22)(12)1

ETM 10A [32] 2 A ⋆ ◦ ◦ ⋆ f 0.533(18)(12)1 0.729(25)(17)

JLQCD 08 [45] 2 A ¥ ◦ ¥ ⋆ − 0.537(4)(40) 0.758(6)(71)

RBC 04 [31] 2 A ¥ ¥ ¥
†

⋆ − 0.495(18) 0.678(25)1

UKQCD 04 [46] 2 A ¥ ¥ ¥
†

¥ − 0.49(13) 0.68(18)

† These results have been obtained at (MπL)min > 4 in a lattice box with a spatial extension L < 2 fm.

e BK is renormalized nonperturbatively at scales 1/a ∼ 2− 3.7GeV in the Nf = 2 RI/MOM scheme. In
this scheme, nonperturbative and NLO perturbative running are shown to agree from 4 GeV down to
2 GeV to better than 3% [32, 47].

f BK is renormalized nonperturbatively at scales 1/a ∼ 2 − 3GeV in the Nf = 2 RI/MOM scheme. In
this scheme, nonperturbative and NLO perturbative running are shown to agree from 4 GeV down to
2 GeV to better than 3% [32, 47].

1 BK(MS, 2GeV) and B̂K are related using the conversion factor 1.369 i.e. the one obtained with Nf =
2 + 1.

Table 26: Results for the Kaon B parameter in QCD with Nf = 2 dynamical flavours, to-
gether with a summary of systematic errors. Any available information about nonperturbative
running is indicated in the column “running”, with details given at the bottom of the table.
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B2 B3 B4 B5

ETM 15 [29] 2+1+1 A ⋆ ◦ ◦ ⋆ a 0.46(1)(3) 0.79(2)(5) 0.78(2)(4) 0.49(3)(3)

RBC/UKQCD 16 [35] 2+1 A ◦ ◦ ◦ ⋆ b 0.488(7)(17) 0.743(14)(64) 0.920(12)(16) 0.707(8)(44)

SWME 15A [13] 2+1 A ⋆ ◦ ⋆ ◦†
− 0.525(1)(23) 0.773(6)(35) 0.981(3)(62) 0.751(7)(68)

SWME 14C [56] 2+1 C ⋆ ◦ ⋆ ◦†
− 0.525(1)(23) 0.774(6)(64) 0.981(3)(61) 0.748(9)(79)

SWME 13A‡ [36] 2+1 A ⋆ ◦ ⋆ ◦†
− 0.549(3)(28) 0.790(30) 1.033(6)(46) 0.855(6)(43)

RBC/ [51] 2+1 A ¥ ◦ ⋆ ⋆ b 0.43(1)(5) 0.75(2)(9) 0.69(1)(7) 0.47(1)(6)
UKQCD 12E

ETM 12D [33] 2 A ⋆ ◦ ◦ ⋆ c 0.47(2)(1) 0.78(4)(2) 0.76(2)(2) 0.58(2)(2)

† The renormalization is performed using perturbation theory at one loop, with a conservative estimate
of the uncertainty.

a Bi are renormalized nonperturbatively at scales 1/a ∼ 2.2 − 3.3GeV in the Nf = 4 RI/MOM scheme
using two different lattice momentum scale intervals, with values around 1/a for the first and around
3.5 GeV for the second one. The impact of these two ways to the final result is taken into account in
the error budget. Conversion to MS is at one loop at 3 GeV.

b The B parameters are renormalized nonperturbatively at a scale of 3 GeV.

c Bi are renormalized nonperturbatively at scales 1/a ∼ 2 − 3.7GeV in the Nf = 2 RI/MOM scheme
using two different lattice momentum scale intervals, with values around 1/a for the first and around
3 GeV for the second one.

‡ The computation of B4 and B5 has been revised in Refs. [13] and [56].

Table 27: Results for the BSM B parameters B2, . . . , B5 in the MS scheme at a reference scale
of 3GeV. Any available information on nonperturbative running is indicated in the column
“running”, with details given at the bottom of the Tab.
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