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A Glossary

A.1 Lattice actions

In this appendix we give brief descriptions of the lattice actions used in the simulations and
summarize their main features.

A.1.1 Gauge actions

The simplest and most widely used discretization of the Yang-Mills part of the QCD action
is the Wilson plaquette action [1]:

SG = β
∑

x

∑

µ<ν

(
1− 1

3Re TrW 1×1
µν (x)

)
, (284)

where β ≡ 6/g20 (with g0 the bare gauge coupling) and the plaquette W 1×1
µν (x) is the product

of link variables around an elementary square of the lattice, i.e.

W 1×1
µν (x) ≡ Uµ(x)Uν(x+ aµ̂)Uµ(x+ aν̂)−1Uν(x)

−1. (285)

This expression reproduces the Euclidean Yang-Mills action in the continuum up to cor-
rections of order a2. There is a general formalism, known as the “Symanzik improvement
programme” [2, 3], which is designed to cancel the leading lattice artifacts, such that ob-
servables have an accelerated rate of convergence to the continuum limit. The improvement
programme is implemented by adding higher-dimensional operators, whose coefficients must
be tuned appropriately in order to cancel the leading lattice artifacts. The effectiveness of
this procedure depends largely on the method with which the coefficients are determined.
The most widely applied methods (in ascending order of effectiveness) include perturbation
theory, tadpole-improved (partially resummed) perturbation theory, renormalization group
methods, and the nonperturbative evaluation of improvement conditions.

In the case of Yang-Mills theory, the simplest version of an improved lattice action is
obtained by adding rectangular 1× 2 loops to the plaquette action, i.e.

Simp
G = β

∑

x

{
c0

∑

µ<ν

(
1− 1

3Re TrW 1×1
µν (x)

)
+ c1

∑

µ,ν

(
1− 1

3Re TrW 1×2
µν (x)

)}
, (286)

where the coefficients c0, c1 satisfy the normalization condition c0 + 8c1 = 1. The Symanzik-

improved [4], Iwasaki [5], and DBW2 [6, 7] actions are all defined through Eq. (286) via
particular choices for c0, c1. Details are listed in Table 51 together with the abbreviations
used in the summary tables. Another widely used variant is the tadpole Symanzik-improved

[8, 9] action which is obtained by adding additional 6-link parallelogram loops W 1×1×1
µνσ (x) to

the action in Eq. (286), i.e.

StadSym
G = Simp

G + β
∑

x

c2
∑

µ<ν<σ

(
1− 1

3Re TrW 1×1×1
µνσ (x)

)
, (287)

where

W 1×1×1
µνσ (x) ≡ Uµ(x)Uν(x+aµ̂)Uσ(x+aµ̂+aν̂)Uµ(x+aσ̂+aν̂)−1Uν(x+aσ̂)−1Uσ(x)

−1 (288)

allows for one-loop improvement [4].

1

http://arxiv.org/abs/1607.00299


S. Aoki et al., Review of lattice results concerning low-energy particle physics, 1607.00299

Abbrev. c1 Description

Wilson 0 Wilson plaquette action

tlSym −1/12 tree-level Symanzik-improved gauge action

tadSym variable tadpole Symanzik-improved gauge action

Iwasaki −0.331 Renormalization group improved (“Iwasaki”) action

DBW2 −1.4088 Renormalization group improved (“DBW2”) action

Table 51: Summary of lattice gauge actions. The leading lattice artifacts are O(a2) or better
for all discretizations.

A.1.2 Light-quark actions

If one attempts to discretize the quark action, one is faced with the fermion doubling problem:
the naive lattice transcription produces a 16-fold degeneracy of the fermion spectrum.

Wilson fermions

Wilson’s solution to the fermion doubling problem is based on adding a dimension-5
(irrelevant) operator to the lattice action. The Wilson-Dirac operator for the massless case
reads [1, 10]

Dw =
1

2
γµ(∇µ +∇∗

µ) + a∇∗
µ∇µ, (289)

where ∇µ, ∇
∗
µ denote the covariant forward and backward lattice derivatives, respectively.

The addition of the Wilson term a∇∗
µ∇µ, results in fermion doublers acquiring a mass pro-

portional to the inverse lattice spacing; close to the continuum limit these extra degrees of
freedom are removed from the low-energy spectrum. However, the Wilson term also results
in an explicit breaking of chiral symmetry even at zero bare quark mass. Consequently, it
also generates divergences proportional to the UV cutoff (inverse lattice spacing), besides the
usual logarithmic ones. Therefore the chiral limit of the regularized theory is not defined
simply by the vanishing of the bare quark mass but must be appropriately tuned. As a
consequence quark-mass renormalization requires a power subtraction on top of the standard
multiplicative logarithmic renormalization. The breaking of chiral symmetry also implies that
the nonrenormalization theorem has to be applied with care [11, 12], resulting in a normal-
ization factor for the axial current which is a regular function of the bare coupling. On the
other hand, vector symmetry is unaffected by the Wilson term and thus a lattice (point split)
vector current is conserved and obeys the usual nonrenormalization theorem with a trivial
(unity) normalization factor. Thus, compared to lattice fermion actions which preserve chiral
symmetry, or a subgroup of it, the Wilson regularization typically results in more complicated
renormalization patterns.

Furthermore, the leading-order lattice artifacts are of order a. With the help of the
Symanzik improvement programme, the leading artifacts can be cancelled in the action by
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adding the so-called “Clover” or Sheikholeslami-Wohlert (SW) term [13]. The resulting ex-
pression in the massless case reads

Dsw = Dw + ia
4 cswσµνF̂µν , (290)

where σµν = i
2 [γµ, γν ], and F̂µν is a lattice transcription of the gluon field strength tensor

Fµν . The coefficient csw can be determined perturbatively at tree-level (csw = 1; tree-level
improvement or tlSW for short), via a mean field approach [8] (mean-field improvement
or mfSW) or via a nonperturbative approach [14] (nonperturbatively improved or npSW).
Hadron masses, computed using Dsw, with the coefficient csw determined nonperturbatively,
will approach the continuum limit with a rate proportional to a2; with tlSW for csw the rate
is proportional to g20a.

Other observables require additional improvement coefficients [13]. A common example
consists in the computation of the matrix element 〈α|Q|β〉 of a composite field Q of dimension-
d with external states |α〉 and |β〉. In the simplest cases, the above bare matrix element
diverges logarithmically and a single renormalization parameter ZQ is adequate to render it
finite. It then approaches the continuum limit with a rate proportional to the lattice spacing a,
even when the lattice action contains the Clover term. In order to reduce discretization errors
to O(a2), the lattice definition of the composite operator Q must be modified (or “improved”),
by the addition of all dimension-(d+1) operators with the same lattice symmetries as Q. Each
of these terms is accompanied by a coefficient which must be tuned in a way analogous to
that of csw. Once these coefficients are determined nonperturbatively, the renormalized matrix
element of the improved operator, computed with a npSW action, converges to the continuum
limit with a rate proportional to a2. A tlSW improvement of these coefficients and csw will
result in a rate proportional to g20a.

It is important to stress that the improvement procedure does not affect the chiral prop-
erties of Wilson fermions; chiral symmetry remains broken.

Finally, we mention “twisted-mass QCD” as a method which was originally designed to ad-
dress another problem of Wilson’s discretization: the Wilson-Dirac operator is not protected
against the occurrence of unphysical zero modes, which manifest themselves as “exceptional”
configurations. They occur with a certain frequency in numerical simulations with Wilson
quarks and can lead to strong statistical fluctuations. The problem can be cured by intro-
ducing a so-called “chirally twisted” mass term. The most common formulation applies to a
flavour doublet ψ̄ = (u d) of mass-degenerate quarks, with the fermionic part of the QCD
action in the continuum assuming the form [15]

Stm;cont
F =

∫
d4xψ(x)(γµDµ +m+ iµqγ5τ

3)ψ(x). (291)

Here, µq is the twisted-mass parameter, and τ3 is a Pauli matrix in flavour space. The
standard action in the continuum can be recovered via a global chiral field rotation. The
physical quark mass is obtained as a function of the two mass parameters m and µq. The
corresponding lattice regularization of twisted-mass QCD (tmWil) for Nf = 2 flavours is
defined through the fermion matrix

Dw +m0 + iµqγ5τ
3 . (292)

Although this formulation breaks physical parity and flavour symmetries, resulting in non-
degenerate neutral and charged pions, is has a number of advantages over standard Wilson
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fermions. Firstly, the presence of the twisted-mass parameter µq protects the discretized the-
ory against unphysical zero modes. A second attractive feature of twisted-mass lattice QCD
is the fact that, once the bare mass parameter m0 is tuned to its “critical value” (correspond-
ing to massless pions in the standard Wilson formulation), the leading lattice artifacts are
of order a2 without the need to add the Sheikholeslami-Wohlert term in the action, or other
improving coefficients [16]. A third important advantage is that, although the problem of
explicit chiral symmetry breaking remains, quantities computed with twisted fermions with a
suitable tuning of the mass parameter µq, are subject to renormalization patterns which are
simpler than the ones with standard Wilson fermions. Well known examples are the pseu-
doscalar decay constant and BK.

Staggered Fermions

An alternative procedure to deal with the doubling problem is based on so-called “stag-
gered” or Kogut-Susskind fermions [17–20]. Here the degeneracy is only lifted partially, from
16 down to 4. It has become customary to refer to these residual doublers as “tastes” in
order to distinguish them from physical flavours. Taste changing interactions can occur via
the exchange of gluons with one or more components of momentum near the cutoff π/a. This
leads to the breaking of the SU(4) vector symmetry among tastes, thereby generating order
a2 lattice artifacts.

The residual doubling of staggered quarks (four tastes per flavour) is removed by taking
a fractional power of the fermion determinant [21] — the “fourth-root procedure,” or, some-
times, the “fourth root trick.” This procedure would be unproblematic if the action had full
SU(4) taste symmetry, which would give a Dirac operator that was block-diagonal in taste
space. However, the breaking of taste symmetry at nonzero lattice spacing leads to a variety
of problems. In fact, the fourth root of the determinant is not equivalent to the determinant
of any local lattice Dirac operator [22]. This in turn leads to violations of unitarity on the
lattice [23–26].

According to standard renormalization group lore, the taste violations, which are associ-
ated with lattice operators of dimension greater than four, might be expected to go away in
the continuum limit, resulting in the restoration of locality and unitarity. However, there is a
problem with applying the standard lore to this nonstandard situation: the usual renormal-
ization group reasoning assumes that the lattice action is local. Nevertheless, Shamir [27, 28]
shows that one may apply the renormalization group to a “nearby” local theory, and thereby
gives a strong argument that that the desired local, unitary theory of QCD is reproduced by
the rooted staggered lattice theory in the continuum limit.

A version of chiral perturbation that includes the lattice artifacts due to taste violations
and rooting (“rooted staggered chiral perturbation theory”) can also be worked out [29–31]
and shown to correctly describe the unitarity-violating lattice artifacts in the pion sector
[24, 32]. This provides additional evidence that the desired continuum limit can be obtained.
Further, it gives a practical method for removing the lattice artifacts from simulation results.
Versions of rooted staggered chiral perturbation theory exist for heavy-light mesons with
staggered light quarks but nonstaggered heavy quarks [33], heavy-light mesons with staggered
light and heavy quarks [34, 35], staggered baryons [36], and mixed actions with a staggered
sea [37, 38], as well as the pion-only version referenced above.

There is also considerable numerical evidence that the rooting procedure works as desired.
This includes investigations in the Schwinger model [39–41], studies of the eigenvalues of the
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Dirac operator in QCD [42–45], and evidence for taste restoration in the pion spectrum as
a → 0 [46, 47].

Issues with the rooting procedure have led Creutz [48–54] to argue that the continuum
limit of the rooted staggered theory cannot be QCD. These objections have however been
answered in Refs. [45, 55–61]. In particular, a claim that the continuum ’t Hooft vertex
[62, 63] could not be properly reproduced by the rooted theory has been refuted [45, 57].

Overall, despite the lack of rigorous proof of the correctness of the rooting procedure, we
think the evidence is strong enough to consider staggered QCD simulations on a par with
simulations using other actions. See the following reviews for further evidence and discussion:
Refs. [47, 56, 58, 61, 64].

Improved Staggered Fermions

An improvement program can be used to suppress taste-changing interactions, leading
to “improved staggered fermions,” with the so-called “Asqtad” [65], “HISQ” [66], “Stout-
smeared” [67], and “HYP” [68] actions as the most common versions. All these actions smear
the gauge links in order to reduce the coupling of high-momentum gluons to the quarks,
with the main goal of decreasing taste-violating interactions. In the Asqtad case, this is
accomplished by replacing the gluon links in the derivatives by averages over 1-, 3-, 5-, and
7-link paths. The other actions reduce taste changing even further by smearing more. In
addition to the smearing, the Asqtad and HISQ actions include a three-hop term in the
action (the “Naik term” [69]) to remove order a2 errors in the dispersion relation, as well as a
“Lepage term” [70] to cancel other order a2 artifacts introduced by the smearing. In both the
Asqtad and HISQ actions, the leading taste violations are of order α2

Sa
2, and “generic” lattices

artifacts (those associated with discretization errors other than taste violations) are of order
αSa

2. The overall coefficients of these errors are, however, significantly smaller with HISQ
than with Asqtad. With the Stout-smeared and HYP actions, the errors are formally larger
(order αSa

2 for taste violations and order a2 for generic lattices artifacts). Nevertheless, the
smearing seems to be very efficient, and the actual size of errors at accessible lattice spacings
appears to be at least as small as with HISQ.

Although logically distinct from the light-quark improvement program for these actions, it
is customary with the HISQ action to include an additional correction designed to reduce dis-
cretization errors for heavy quarks (in practice, usually charm quarks) [66]. The Naik term
is adjusted to remove leading (amc)

4 and αS(amc)
2 errors, where mc is the charm-quark

mass and “leading” in this context means leading in powers of the heavy-quark velocity v
(v/c ∼ 1/3 for Ds). With these improvements, the claim is that one can use the staggered
action for charm quarks, although it must be emphasized that it is not obvious a priori how
large a value of amc may be tolerated for a given desired accuracy, and this must be studied
in the simulations.

Ginsparg-Wilson fermions

Fermionic lattice actions, which do not suffer from the doubling problem whilst preserving
chiral symmetry go under the name of “Ginsparg-Wilson fermions”. In the continuum the
massless Dirac operator (D) anti-commutes with γ5. At nonzero lattice spacing a chiral
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symmetry can be realized if this condition is relaxed to [71–73]

{D, γ5} = aDγ5D, (293)

which is now known as the Ginsparg-Wilson relation [74]. The Nielsen-Ninomiya theorem [75],
which states that any lattice formulation for which D anticommutes with γ5 necessarily has
doubler fermions, is circumvented since {D, γ5} 6= 0.

A lattice Dirac operator which satisfies Eq. (293) can be constructed in several ways. The
so-called “overlap” or Neuberger-Dirac operator [76] acts in four space-time dimensions and
is, in its simplest form, defined by

DN = 1
a (1− ǫ(A)) , where ǫ(A) ≡ A(A†A)−1/2, A = 1 + s− aDw, a = a

1+s , (294)

Dw is the massless Wilson-Dirac operator and |s| < 1 is a tunable parameter. The overlap
operator DN removes all doublers from the spectrum, and can readily be shown to satisfy
the Ginsparg-Wilson relation. The occurrence of the sign function ǫ(A) in DN renders the
application ofDN in a computer program potentially very costly, since it must be implemented
using, for instance, a polynomial approximation.

The most widely used approach to satisfying the Ginsparg-Wilson relation Eq. (293) in
large-scale numerical simulations is provided by Domain Wall Fermions (DWF) [77–79] and
we therefore describe this in some more detail. Following early exploratory studies [80]. this
approach has been developed into a practical formulation of lattice QCD with good chiral
and flavour symmetries leading to results which contribute significantly to this review. In
this formulation, the fermion fields ψ(x, s) depend on a discrete fifth coordinate s = 1, . . . , N
as well as the physical 4-dimensional space-time coordinates xµ, µ = 1 · · · 4 (the gluon fields
do not depend on s). The lattice on which the simulations are performed, is therefore a
five-dimensional one of size L3 × T × N , where L, T and N represent the number of points
in the spatial, temporal and fifth dimensions respectively. The remarkable feature of DWF is
that for each flavour there exists a physical light mode corresponding to the field q(x):

q(x) = 1+γ5

2 ψ(x, 1) + 1−γ5

2 ψ(x,N) (295)

q̄(x) = ψ(x,N)1+γ5

2 + ψ(x, 1)1−γ5

2 . (296)

The left and right-handed modes of the physical field are located on opposite boundaries
in the 5th dimensional space which, for N → ∞, allows for independent transformations of
the left and right components of the quark fields, that is for chiral transformations. Unlike
Wilson fermions, where for each flavour the quark-mass parameter in the action is fine-tuned
requiring a subtraction of contributions of O(1/a) where a is the lattice spacing, with DWF
no such subtraction is necessary for the physical modes, whereas the unphysical modes have
masses of O(1/a) and decouple.

In actual simulations N is finite and there are small violations of chiral symmetry which
must be accounted for. The theoretical framework for the study of the residual breaking of
chiral symmetry has been a subject of intensive investigation (for a review and references to
the original literature see e.g. [81]). The breaking requires one or more crossings of the fifth
dimension to couple the left and right-handed modes; the more crossings that are required
the smaller the effect. For many physical quantities the leading effects of chiral symmetry
breaking due to finite N are parameterized by a residual mass, mres. For example, the PCAC
relation (for degenerate quarks of mass m) ∂µAµ(x) = 2mP (x), where Aµ and P represent
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the axial current and pseudoscalar density respectively, is satisfied with m = mDWF +mres,
where mDWF is the bare mass in the DWF action. The mixing of operators which transform
under different representations of chiral symmetry is found to be negligibly small in current
simulations. The important thing to note is that the chiral symmetry breaking effects are
small and that there are techniques to mitigate their consequences.

The main price which has to be paid for the good chiral symmetry is that the simulations
are performed in 5 dimensions, requiring approximately a factor of N in computing resources
and resulting in practice in ensembles at fewer values of the lattice spacing and quark masses
than is possible with other formulations. The current generation of DWF simulations is
being performed at physical quark masses so that ensembles with good chiral and flavour
symmetries are being generated and analysed [82]. For a discussion of the equivalence of
DWF and overlap fermions see Refs. [83, 84].

A third example of an operator which satisfies the Ginsparg-Wilson relation is the so-called
fixed-point action [85–87]. This construction proceeds via a renormalization group approach.
A related formalism are the so-called “chirally improved” fermions [88].

Smearing

A simple modification which can help improve the action as well as the computational
performance is the use of smeared gauge fields in the covariant derivatives of the fermionic
action. Any smearing procedure is acceptable as long as it consists of only adding irrelevant
(local) operators. Moreover, it can be combined with any discretization of the quark action.
The “Asqtad” staggered quark action mentioned above [65] is an example which makes use of
so-called “Asqtad” smeared (or “fat”) links. Another example is the use of n-HYP smeared
[68, 89], stout smeared [90, 91] or HEX (hypercubic stout) smeared [92] gauge links in the tree-
level clover improved discretization of the quark action, denoted by “n-HYP tlSW”, “stout
tlSW” and “HEX tlSW” in the following.

In Table 52 we summarize the most widely used discretizations of the quark action and their
main properties together with the abbreviations used in the summary tables. Note that in
order to maintain the leading lattice artifacts of the actions as given in the table in nonspectral
observables (like operator matrix elements) the corresponding nonspectral operators need to
be improved as well.

A.1.3 Heavy-quark actions

Charm and bottom quarks are often simulated with different lattice-quark actions than up,
down, and strange quarks because their masses are large relative to typical lattice spacings
in current simulations; for example, amc ∼ 0.4 and amb ∼ 1.3 at a = 0.06 fm. Therefore,
for the actions described in the previous section, using a sufficiently small lattice spacing to
control generic (amh)

n discretization errors is computationally costly, and in fact prohibitive
at the physical b-quark mass.

One approach for lattice heavy quarks is direct application of effective theory. In this
case the lattice heavy-quark action only correctly describes phenomena in a specific kine-
matic regime, such as Heavy-Quark Effective Theory (HQET) [93–95] or Nonrelativistic QCD
(NRQCD) [96, 97]. One can discretize the effective Lagrangian to obtain, for example, Lattice
HQET [98] or Lattice NRQCD [99, 100], and then simulate the effective theory numerically.
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Abbrev. Discretization Leading lattice
artifacts

Chiral symmetry Remarks

Wilson Wilson O(a) broken

tmWil twisted-mass Wilson O(a2) at
maximal twist

broken flavour-symmetry breaking:
(M0

PS)
2
− (M±

PS)
2
∼ O(a2)

tlSW Sheikholeslami-Wohlert O(g2a) broken tree-level impr., csw = 1

n-HYP
tlSW

Sheikholeslami-Wohlert O(g2a) broken tree-level impr., csw = 1,
n-HYP smeared gauge links

stout
tlSW

Sheikholeslami-Wohlert O(g2a) broken tree-level impr., csw = 1,
stout smeared gauge links

HEX
tlSW

Sheikholeslami-Wohlert O(g2a) broken tree-level impr., csw = 1,
HEX smeared gauge links

mfSW Sheikholeslami-Wohlert O(g2a) broken mean-field impr.

npSW Sheikholeslami-Wohlert O(a2) broken nonperturbatively impr.

KS Staggered O(a2) U(1)×U(1) subgr.
unbroken

rooting for Nf < 4

Asqtad Staggered O(a2) U(1)×U(1) subgr.
unbroken

Asqtad smeared gauge links,
rooting for Nf < 4

HISQ Staggered O(a2) U(1)×U(1) subgr.
unbroken

HISQ smeared gauge links,
rooting for Nf < 4

DW Domain Wall asymptotically
O(a2)

remnant breaking
exponentially suppr.

exact chiral symmetry and
O(a) impr. only in the limit
N → ∞

oDW optimal Domain Wall asymptotically
O(a2)

remnant breaking
exponentially suppr.

exact chiral symmetry and
O(a) impr. only in the limit
N → ∞

M-DW Moebius Domain Wall asymptotically
O(a2)

remnant breaking
exponentially suppr.

exact chiral symmetry and
O(a) impr. only in the limit
N → ∞

overlap Neuberger O(a2) exact

Table 52: The most widely used discretizations of the quark action and some of their proper-
ties. Note that in order to maintain the leading lattice artifacts of the action in nonspectral
observables (like operator matrix elements) the corresponding nonspectral operators need to
be improved as well.
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The coefficients of the operators in the lattice-HQET and lattice-NRQCD actions are free
parameters that must be determined by matching to the underlying theory (QCD) through
the chosen order in 1/mh or v2h, where mh is the heavy-quark mass and vh is the heavy-quark
velocity in the the heavy-light meson rest frame.

Another approach is to interpret a relativistic quark action such as those described in
the previous section in a manner suitable for heavy quarks. One can extend the standard
Symanzik improvement program, which allows one to systematically remove lattice cutoff
effects by adding higher-dimension operators to the action, by allowing the coefficients of the
dimension 4 and higher operators to depend explicitly upon the heavy-quark mass. Different
prescriptions for tuning the parameters correspond to different implementations: those in
common use are often called the Fermilab action [101], the relativistic heavy-quark action
(RHQ) [102], and the Tsukuba formulation [103]. In the Fermilab approach, HQET is used
to match the lattice theory to continuum QCD at the desired order in 1/mh.

More generally, effective theory can be used to estimate the size of cutoff errors from the
various lattice heavy-quark actions. The power counting for the sizes of operators with heavy
quarks depends on the typical momenta of the heavy quarks in the system. Bound-state
dynamics differ considerably between heavy-heavy and heavy-light systems. In heavy-light
systems, the heavy quark provides an approximately static source for the attractive binding
force, like the proton in a hydrogen atom. The typical heavy-quark momentum in the bound-
state rest frame is |~ph| ∼ ΛQCD, and heavy-light operators scale as powers of (ΛQCD/mh)

n.
This is often called “HQET power-counting”, although it applies to heavy-light operators in
HQET, NRQCD, and even relativistic heavy-quark actions described below. Heavy-heavy
systems are similar to positronium or the deuteron, with the typical heavy-quark momentum
|~ph| ∼ αSmh. Therefore motion of the heavy quarks in the bound state rest frame cannot be
neglected. Heavy-heavy operators have complicated power counting rules in terms of v2h [100];
this is often called “NRQCD power counting.”

Alternatively, one can simulate bottom or charm quarks with the same action as up, down,
and strange quarks provided that (1) the action is sufficiently improved, and (2) the lattice
spacing is sufficiently fine. These qualitative criteria do not specify precisely how large a
numerical value of amh can be allowed while obtaining a given precision for physical quan-
tities; this must be established empirically in numerical simulations. At present, both the
HISQ and twisted-mass Wilson actions discussed previously are being used to simulate charm
quarks. Simulations with HISQ quarks have employed heavier-quark masses than those with
twisted-mass Wilson quarks because the action is more highly improved, but neither action
can be used to simulate at the physical amb for current lattice spacings. Therefore calcula-
tions of heavy-light decay constants with these actions still rely on effective theory to reach
the b-quark mass: the ETM Collaboration interpolates between twisted-mass Wilson data
generated near amc and the static point [104], while the HPQCD Collaboration extrapolates
HISQ data generated below amb up to the physical point using an HQET-inspired series ex-
pansion in (1/mh)

n [105].

Heavy-quark effective theory

HQET was introduced by Eichten and Hill in Ref. [94]. It provides the correct asymp-
totic description of QCD correlation functions in the static limit mh/|~ph|→∞. Subleading
effects are described by higher dimensional operators whose coupling constants are formally
of O((1/mh)

n). The HQET expansion works well for heavy-light systems in which the heavy-
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quark momentum is small compared to the mass.
The HQET Lagrangian density at the leading (static) order in the rest frame of the heavy

quark is given by
Lstat(x) = ψh(x)D0 ψh(x) , (297)

with

P+ψh = ψh , ψhP+ = ψh , P+ =
1 + γ0

2
. (298)

A bare quark mass mstat
bare has to be added to the energy levels Estat computed with this

Lagrangian to obtain the physical ones. For example, the mass of the B meson in the static
approximation is given by

mB = Estat +mstat
bare . (299)

At tree-level mstat
bare is simply the (static approximation of the) b-quark mass, but in the

quantized lattice formulation it has to further compensate a divergence linear in the inverse
lattice spacing. Weak composite fields are also rewritten in terms of the static fields, e.g.

A0(x)
stat = Zstat

A

(
ψ(x)γ0γ5ψh(x)

)
, (300)

where the renormalization factor of the axial current in the static theory Zstat
A is scale-

dependent. Recent lattice-QCD calculations using static b quarks and dynamical light quarks
[104, 106] perform the operator matching at one-loop in mean-field improved lattice pertur-
bation theory [107, 108]. Therefore the heavy-quark discretization, truncation, and matching
errors in these results are of O(a2Λ2

QCD), O(ΛQCD/mh), and O(α2
s, α

2
saΛQCD).

In order to reduce heavy-quark truncation errors in B-meson masses and matrix elements
to the few-percent level, state-of-the-art lattice-HQET computations now include corrections
of O(1/mh). Adding the 1/mh terms, the HQET Lagrangian reads

LHQET(x) = Lstat(x)− ωkinOkin(x)− ωspinOspin(x) , (301)

Okin(x) = ψh(x)D
2ψh(x) , Ospin(x) = ψh(x)σ ·Bψh(x) . (302)

At this order, two other parameters appear in the Lagrangian, ωkin and ωspin. The normaliza-
tion is such that the tree-level values of the coefficients are ωkin = ωspin = 1/(2mh). Similarly
the operators are formally expanded in inverse powers of the heavy-quark mass. The time
component of the axial current, relevant for the computation of mesonic decay constants is
given by

AHQET
0 (x) = ZHQET

A

(
Astat

0 (x) +
2∑

i=1

c
(i)
A A

(i)
0 (x)

)
, (303)

A
(1)
0 (x) = ψ 1

2γ5γk(∇k −
←−
∇k)ψh(x), k = 1, 2, 3 (304)

A
(2)
0 = −∂kA

stat
k (x) , Astat

k = ψ(x)γkγ5ψh(x) , (305)

and depends on two additional parameters c
(1)
A and c

(2)
A .

A framework for nonperturbative HQET on the lattice has been introduced in Refs. [98,
109]. As pointed out in Refs. [110, 111], since αs(mh) decreases logarithmically with mh,
whereas corrections in the effective theory are power-like in Λ/mh, it is possible that the
leading errors in a calculation will be due to the perturbative matching of the action and the
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currents at a given order (Λ/mh)
l rather than to the missing O((Λ/mh)

l+1) terms. Thus, in
order to keep matching errors below the uncertainty due to truncating the HQET expansion,
the matching is performed nonperturbatively beyond leading order in 1/mh. The asymptotic
convergence of HQET in the limit mh → ∞ indeed holds only in that case.

The higher dimensional interaction terms in the effective Lagrangian are treated as space-
time volume insertions into static correlation functions. For correlators of some multi-local
fields Q and up to the 1/mh corrections to the operator, this means

〈Q〉 = 〈Q〉stat + ωkina
4
∑

x

〈QOkin(x)〉stat + ωspina
4
∑

x

〈QOspin(x)〉stat , (306)

where 〈Q〉stat denotes the static expectation value with Lstat(x) + Llight(x). Nonperturba-
tive renormalization of these correlators guarantees the existence of a well-defined continuum
limit to any order in 1/mh. The parameters of the effective action and operators are then
determined by matching a suitable number of observables calculated in HQET (to a given
order in 1/mh) and in QCD in a small volume (typically with L ≃ 0.5 fm), where the full
relativistic dynamics of the b-quark can be simulated and the parameters can be computed
with good accuracy. In Refs. [109, 112] the Schrödinger Functional (SF) setup has been
adopted to define a set of quantities, given by the small volume equivalent of decay constants,
pseudoscalar-vector splittings, effective masses and ratio of correlation functions for different
kinematics, that can be used to implement the matching conditions. The kinematical condi-
tions are usually modified by changing the periodicity in space of the fermions, i.e. by directly
exploiting a finite-volume effect. The new scale L, which is introduced in this way, is chosen
such that higher orders in 1/mhL and in ΛQCD/mh are of about the same size. At the end of
the matching step the parameters are known at lattice spacings which are of the order of 0.01
fm, significantly smaller than the resolutions used for large volume, phenomenological, appli-
cations. For this reason a set of SF-step scaling functions is introduced in the effective theory
to evolve the parameters to larger lattice spacings. The whole procedure yields the nonper-
turbative parameters with an accuracy which allows to compute phenomenological quantities
with a precision of a few percent (see Refs. [113, 114] for the case of the B(s) decay constants).
Such an accuracy can not be achieved by performing the nonperturbative matching in large
volume against experimental measurements, which in addition would reduce the predictivity
of the theory. For the lattice-HQET action matched nonperturbatively through O(1/mh),
discretization and truncation errors are of O(aΛ2

QCD/mh, a
2Λ2

QCD) and O((ΛQCD/mh)
2).

The noise-to-signal ratio of static-light correlation functions grows exponentially in Eu-
clidean time, ∝ eµx0 . The rate µ is nonuniversal but diverges as 1/a as one approaches
the continuum limit. By changing the discretization of the covariant derivative in the static
action one may achieve an exponential reduction of the noise to signal ratio. Such a strategy
led to the introduction of the Sstat

HYP1,2 actions [115], where the thin links in D0 are replaced
by HYP-smeared links [68]. These actions are now used in all lattice applications of HQET.

Nonrelativistic QCD

Nonrelativistic QCD (NRQCD) [99, 100] is an effective theory that can be matched to
full QCD order by order in the heavy-quark velocity v2h (for heavy-heavy systems) or in
ΛQCD/mh (for heavy-light systems) and in powers of αs. Relativistic corrections appear as
higher-dimensional operators in the Hamiltonian.
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As an effective field theory, NRQCD is only useful with an ultraviolet cutoff of order
mh or less. On the lattice this means that it can be used only for amh > 1, which means
that O(an) errors cannot be removed by taking a → 0 at fixed mh. Instead heavy-quark
discretization errors are systematically removed by adding additional operators to the lattice
Hamiltonian. Thus, while strictly speaking no continuum limit exists at fixed mh, continuum
physics can be obtained at finite lattice spacing to arbitrarily high precision provided enough
terms are included, and provided that the coefficients of these terms are calculated with
sufficient accuracy. Residual discretization errors can be parameterized as corrections to the
coefficients in the nonrelativistic expansion, as shown in Eq. (309). Typically they are of
the form (a|~ph|)

n multiplied by a function of amh that is smooth over the limited range of
heavy-quark masses (with amh > 1) used in simulations, and can therefore can be represented
by a low-order polynomial in amh by Taylor’s theorem (see Ref. [116] for further discussion).
Power-counting estimates of these effects can be compared to the observed lattice spacing
dependence in simulations. Provided that these effects are small, such comparisons can be
used to estimate and correct the residual discretization effects.

An important feature of the NRQCD approach is that the same action can be applied to
both heavy-heavy and heavy-light systems. This allows, for instance, the bare b-quark mass
to be fixed via experimental input from Υ so that simulations carried out in the B or Bs

systems have no adjustable parameters left. Precision calculations of the Bs-meson mass (or
of the mass splitting MBs − MΥ/2) can then be used to test the reliability of the method
before turning to quantities one is trying to predict, such as decay constants fB and fBs ,
semileptonic form factors or neutral B mixing parameters.

Given the same lattice-NRQCD heavy-quark action, simulation results will not be as
accurate for charm quarks as for bottom (1/mb < 1/mc, and vb < vc in heavy-heavy systems).
For charm, however, a more serious concern is the restriction that amh must be greater than
one. This limits lattice-NRQCD simulations at the physical amc to relatively coarse lattice
spacings for which light-quark and gluon discretization errors could be large. Thus recent
lattice-NRQCD simulations have focused on bottom quarks because amb > 1 in the range of
typical lattice spacings between ≈ 0.06 and 0.15 fm.

In most simulations with NRQCD b-quarks during the past decade one has worked with an
NRQCD action that includes tree-level relativistic corrections through O(v4h) and discretiza-
tion corrections through O(a2),

SNRQCD = a4
∑

x

{
Ψ†

tΨt −Ψ†
t

(
1− aδH

2

)
t

(
1− aH0

2n

)n
t

× U †
t (t− a)

(
1− aH0

2n

)n
t−a

(
1− aδH

2

)
t−a

Ψt−a

}
, (307)

where the subscripts “t” and “t− a” denote that the heavy-quark, gauge, E, and B-fields are
on time slices t or t− a, respectively. H0 is the nonrelativistic kinetic energy operator,

H0 = −
∆(2)

2mh
, (308)
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and δH includes relativistic and finite-lattice-spacing corrections,

δH = −c1
(∆(2))2

8m3
h

+ c2
ig

8m2
h

(
∇ · Ẽ− Ẽ · ∇

)

−c3
g

8m2
h

σ · (∇̃ × Ẽ− Ẽ× ∇̃)

−c4
g

2mh
σ · B̃+ c5

a2∆(4)

24mh
− c6

a(∆(2))2

16nm2
h

. (309)

mh is the bare heavy-quark mass, ∆(2) the lattice Laplacian, ∇ the symmetric lattice deriva-
tive and ∆(4) the lattice discretization of the continuum

∑
iD

4
i . ∇̃ is the improved symmetric

lattice derivative and the Ẽ and B̃ fields have been improved beyond the usual clover leaf con-
struction. The stability parameter n is discussed in Ref. [100]. In most cases the ci’s have been
set equal to their tree-level values ci = 1. With this implementation of the NRQCD action,
errors in heavy-light-meson masses and splittings are of O(αSΛQCD/mh), O(αS(ΛQCD/mh)

2),
O((ΛQCD/mh)

3), and O(αsa
2Λ2

QCD), with coefficients that are functions of amh. One-loop
corrections to many of the coefficients in Eq. (309) have now been calculated, and are starting
to be included in simulations [117–119].

Most of the operator matchings involving heavy-light currents or four-fermion operators
with NRQCD b-quarks and AsqTad or HISQ light quarks have been carried out at one-loop
order in lattice perturbation theory. In calculations published to date of electroweak ma-
trix elements, heavy-light currents with massless light quarks have been matched through
O(αs,ΛQCD/mh, αs/(amh), αsΛQCD/mh), and four-fermion operators through
O(αs,ΛQCD/mh, αs/(amh)). NRQCD/HISQ currents with massive HISQ quarks are also of
interest, e.g. for the bottom-charm currents in B → D(∗), lν semileptonic decays and the rel-
evant matching calculations have been performed at one-loop order in Ref. [120]. Taking all
the above into account, the most significant systematic error in electroweak matrix elements
published to date with NRQCD b-quarks is the O(α2

s) perturbative matching uncertainty.
Work is therefore underway to use current-current correlator methods combined with very
high order continuum perturbation theory to do current matchings nonperturbatively [121].

Relativistic heavy quarks

An approach for relativistic heavy-quark lattice formulations was first introduced by El-
Khadra, Kronfeld, and Mackenzie in Ref. [101]. Here they showed that, for a general lattice
action with massive quarks and non-Abelian gauge fields, discretization errors can be factor-
ized into the form f(mha)(a|~ph|)

n, and that the function f(mha) is bounded to be of O(1)
or less for all values of the quark mass mh. Therefore cutoff effects are of O(aΛQCD)

n and
O((a|~ph|)

n), even for amh ∼> 1, and can be controlled using a Symanzik-like procedure. As in
the standard Symanzik improvement program, cutoff effects are systematically removed by
introducing higher-dimension operators to the lattice action and suitably tuning their coeffi-
cients. In the relativistic heavy-quark approach, however, the operator coefficients are allowed
to depend explicitly on the quark mass. By including lattice operators through dimension
n and adjusting their coefficients cn,i(mha) correctly, one enforces that matrix elements in
the lattice theory are equal to the analogous matrix elements in continuum QCD through
(a|~ph|)

n, such that residual heavy-quark discretization errors are of O(a|~ph|)
n+1.

The relativistic heavy-quark approach can be used to compute the matrix elements of
states containing heavy quarks for which the heavy-quark spatial momentum |~ph| is small
compared to the lattice spacing. Thus it is suitable to describe bottom and charm quarks in
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both heavy-light and heavy-heavy systems. Calculations of bottomonium and charmonium
spectra serve as nontrivial tests of the method and its accuracy.

At fixed lattice spacing, relativistic heavy-quark formulations recover the massless limit
when (amh) ≪ 1, recover the static limit when (amh) ≫ 1, and smoothy interpolate be-
tween the two; thus they can be used for any value of the quark mass, and, in particular,
for both charm and bottom. Discretization errors for relativistic heavy-quark formulations
are generically of the form αk

sf(amh)(a|~ph|)
n, where k reflects the order of the perturbative

matching for operators of O((a|~ph|)
n). For each n, such errors are removed completely if the

operator matching is nonperturbative. When (amh) ∼ 1, this gives rise to nontrivial lattice-
spacing dependence in physical quantities, and it is prudent to compare estimates based on
power-counting with a direct study of scaling behaviour using a range of lattice spacings. At
fixed quark mass, relativistic heavy-quark actions possess a smooth continuum limit without
power-divergences. Of course, as mh → ∞ at fixed lattice spacing, the power divergences of
the static limit are recovered (see, e.g. Ref. [122]).

The relativistic heavy-quark formulations in use all begin with the anisotropic Sheikholeslami-
Wohlert (“clover”) action [123]:

Slat = a4
∑

x,x′

ψ̄(x′)

(
m0 + γ0D0 + ζ~γ · ~D − a

2 (D
0)2 − a

2ζ(
~D)2 +

∑

µ,ν

ia
4 cSWσµνFµν

)

x′x

ψ(x) ,

(310)
where Dµ is the lattice covariant derivative and Fµν is the lattice field-strength tensor. Here
we show the form of the action given in Ref. [102]. The introduction of a space-time anisotropy,
parameterized by ζ in Eq. (310), is convenient for heavy-quark systems because the charac-
teristic heavy-quark four-momenta do not respect space-time axis exchange (~ph < mh in the
bound-state rest frame). Further, the Sheikoleslami-Wohlert action respects the continuum
heavy-quark spin and flavour symmetries, so HQET can be used to interpret and estimate
lattice discretization effects [122, 124, 125]. We discuss three different prescriptions for tuning
the parameters of the action in common use below. In particular, we focus on aspects of the
action and operator improvement and matching relevant for evaluating the quality of the
calculations discussed in the main text.

The meson energy-momentum dispersion relation plays an important role in relativistic
heavy-quark formulations:

E(~p) = M1 +
~p2

2M2
+O(~p4) , (311)

where M1 and M2 are known as the rest and kinetic masses, respectively. Because the lattice
breaks Lorentz invariance, there are corrections proportional to powers of the momentum.
Further, the lattice rest masses and kinetic masses are not equal (M1 6= M2), and only
become equal in the continuum limit.

The Fermilab interpretation [101] is suitable for calculations of mass splittings and ma-
trix elements of systems with heavy quarks. The Fermilab action is based on the hopping-
parameter form of the Wilson action, in which κh parameterizes the heavy-quark mass. In
practice, κh is tuned such that the the kinetic meson mass equals the experimentally-measured
heavy-strange meson mass (mBs for bottom and mDs for charm). In principle, one could also
tune the anisotropy parameter such that M1 = M2. This is not necessary, however, to obtain
mass splittings and matrix elements, which are not affected by M1 [124]. Therefore in the
Fermilab action the anisotropy parameter is set equal to unity. The clover coefficient in the
Fermilab action is fixed to the value cSW = 1/u30 from mean-field improved lattice pertur-
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bation theory [8]. With this prescription, discretization effects are of O(αsa|~ph|, (a|~ph|)
2).

Calculations of electroweak matrix elements also require improving the lattice current and
four-fermion operators to the same order, and matching them to the continuum. Calculations
with the Fermilab action remove tree-level O(a) errors in electroweak operators by rotat-
ing the heavy-quark field used in the matrix element and setting the rotation coefficient to
its tadpole-improved tree-level value (see e.g. Eqs. (7.8) and (7.10) of Ref. [101]). Finally,
electroweak operators are typically renormalized using a mostly nonperturbative approach in
which the flavour-conserving light-light and heavy-heavy current renormalization factors Z ll

V

and Zhh
V are computed nonperturbatively [126]. The flavour-conserving factors account for

most of the heavy-light current renormalization. The remaining correction is expected to be
close to unity due to the cancellation of most of the radiative corrections including tadpole
graphs [122]; therefore it can be reliably computed at one-loop in mean-field improved lattice
perturbation theory with truncation errors at the percent to few-percent level.

The relativistic heavy-quark (RHQ) formulation developed by Li, Lin, and Christ builds
upon the Fermilab approach, but tunes all the parameters of the action in Eq. (310) nonper-
turbatively [102]. In practice, the three parameters {m0a, cSW, ζ} are fixed to reproduce the
experimentally-measured Bs meson mass and hyperfine splitting (mB∗

s
−mBs), and to make

the kinetic and rest masses of the lattice Bs meson equal [127]. This is done by computing
the heavy-strange meson mass, hyperfine splitting, and ratio M1/M2 for several sets of bare
parameters {m0a, cSW, ζ} and interpolating linearly to the physical Bs point. By fixing the
Bs-meson hyperfine splitting, one loses a potential experimental prediction with respect to
the Fermilab formulation. However, by requiring that M1 = M2, one gains the ability to use
the meson rest masses, which are generally more precise than the kinetic masses, in the RHQ
approach. The nonperturbative parameter-tuning procedure eliminates O(a) errors from the
RHQ action, such that discretization errors are of O((a|~ph|)

2). Calculations of B-meson de-
cay constants and semileptonic form factors with the RHQ action are in progress [128, 129],
as is the corresponding one-loop mean-field improved lattice perturbation theory [130]. For
these works, cutoff effects in the electroweak vector and axial-vector currents will be removed
through O(αsa), such that the remaining discretization errors are of O(α2

sa|~ph|, (a|~ph|)
2).

Matching the lattice operators to the continuum will be done following the mostly nonper-
turbative approach described above.

The Tsukuba heavy-quark action is also based on the Sheikholeslami-Wohlert action in
Eq. (310), but allows for further anisotropies and hence has additional parameters: specifi-
cally the clover coefficients in the spatial (cB) and temporal (cE) directions differ, as do the
anisotropy coefficients of the ~D and ~D2 operators [103]. In practice, the contribution to the
clover coefficient in the massless limit is computed nonperturbatively [131], while the mass-
dependent contributions, which differ for cB and cE , are calculated at one-loop in mean-field
improved lattice perturbation theory [132]. The hopping parameter is fixed nonperturbatively
to reproduce the experimentally-measured spin-averaged 1S charmonium mass [133]. One of
the anisotropy parameters (rt in Ref. [133]) is also set to its one-loop perturbative value,
while the other (ν in Ref. [133]) is fixed noperturbatively to obtain the continuum dispersion
relation for the spin-averaged charmonium 1S states (such that M1 = M2). For the renormal-
ization and improvement coefficients of weak current operators, the contributions in the chiral
limit are obtained nonperturbatively [134, 135], while the mass-dependent contributions are
estimated using one-loop lattice perturbation theory [136]. With these choices, lattice cutoff
effects from the action and operators are of O(α2

sa|~p|, (a|~ph|)
2).
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Light-quark actions combined with HQET

The heavy-quark formulations discussed in the previous sections use effective field theory
to avoid the occurence of discretization errors of the form (amh)

n. In this section we describe
methods that use improved actions that were originally designed for light-quark systems for
B physics calculations. Such actions unavoidably contain discretization errors that grow as
a power of the heavy-quark mass. In order to use them for heavy-quark physics, they must
be improved to at least O(amh)

2. However, since amb > 1 at the smallest lattice spacings
available in current simulations, these methods also require input from HQET to guide the
simulation results to the physical b-quark mass.

The ETM collaboration has developed two methods, the “ratio method” [137] and the
“interpolation method” [138, 139]. They use these methods together with simulations with
twisted-mass Wilson fermions, which have discretization errors of O(amh)

2. In the interpo-
lation method Φhs and Φhℓ (or Φhs/Φhℓ) are calculated for a range of heavy-quark masses
in the charm region and above, while roughly keeping amh

<
∼0.5. The relativistic results are

combined with a separate calculation of the decay constants in the static limit, and then
interpolated to the physical b quark mass. In ETM’s implementation of this method, the
heavy Wilson decay constants are matched to HQET using NLO in continuum perturbation
theory. The static limit result is renormalized using one-loop mean-field improved lattice
perturbation theory, while for the relativistic data PCAC is used to calculate absolutely nor-
malized matrix elements. Both, the relativistic and static limit data are then run to the
common reference scale µb = 4.5GeV at NLO in continuum perturbation theory. In the ratio
method, one constructs physical quantities P (mh) from the relativistic data that have a well-
defined static limit (P (mh) → const. for mh → ∞) and evaluates them at the heavy-quark
masses used in the simulations. Ratios of these quantities are then formed at a fixed ratio
of heavy quark masses, z = P (mh)/P (mh/λ) (where 1 < λ<

∼ 1.3), which ensures that z is
equal to unity in the static limit. Hence, a separate static limit calculation is not needed
with this method. In ETM’s implementation of the ratio method for the B-meson decay
constant, P (mh) is constructed from the decay constants and the heavy-quark pole mass as

P (mh) = fhℓ(mh) · (m
pole
h )1/2. The corresponding z-ratio therefore also includes ratios of per-

turbative matching factors for the pole mass to MS conversion. For the interpolation to the
physical b-quark mass, ratios of perturbative matching factors converting the data from QCD
to HQET are also included. The QCD-to-HQET matching factors improve the approach to
the static limit by removing the leading logarithmic corrections. In ETM’s implementation
of this method (ETM 11 and 12) both conversion factors are evaluated at NLO in continuum
perturbation theory. The ratios are then simply fit to a polynomial in 1/mh and interpolated
to the physical b-quark mass. The ratios constructed from fhℓ (fhs) are called z (zs). In
order to obtain the B meson decay constants, the ratios are combined with relativistic decay
constant data evaluated at the smallest reference mass.

The HPQCD collaboration has introduced a method in Ref. [105] which we shall re-
fer to as the “heavy HISQ” method. The first key ingredient is the use of the HISQ
action for the heavy and light valence quarks, which has leading discretization errors of
O
(
αs(v/c)(amh)

2, (v/c)2(amh)
4
)
. With the same action for the heavy and light valence

quarks it is possible to use PCAC to avoid renormalization uncertainties. Another key in-
gredient is the availability of gauge ensembles over a large range of lattice spacings, in this
case in the form of the library of Nf = 2 + 1 asqtad ensembles made public by the MILC
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collaboration which includes lattice spacings as small as a ≈ 0.045 fm. Since the HISQ action
is so highly improved and with lattice spacings as small as 0.045 fm, HPQCD is able to use a
large range of heavy-quark masses, from below the charm region to almost up to the physical
b quark mass with amh

<
∼0.85. They then fit their data in a combined continuum and HQET

fit (i.e. using a fit function that is motivated by HQET) to a polynomial in 1/mH (the heavy
pseudo scalar meson mass of a meson containing a heavy (h) quark).

In Table 53 we list the discretizations of the quark action most widely used for heavy c and
b quarks together with the abbreviations used in the summary tables. We also summarize the
main properties of these actions and the leading lattice discretization errors for calculations
of heavy-light meson matrix quantities with them. Note that in order to maintain the leading
lattice artifacts of the actions as given in the table in nonspectral observables (like operator
matrix elements) the corresponding nonspectral operators need to be improved as well.

A.2 Setting the scale

In simulations of lattice QCD quantities such as hadron masses and decay constants are
obtained in “lattice units” i.e. as dimensionless numbers. In order to convert them into
physical units they must be expressed in terms of some experimentally known, dimensionful
reference quantity Q. This procedure is called “setting the scale”. It amounts to computing
the nonperturbative relation between the bare gauge coupling g0 (which is an input parameter
in any lattice simulation) and the lattice spacing a expressed in physical units. To this end
one chooses a value for g0 and computes the value of the reference quantity in a simulation:
This yields the dimensionless combination, (aQ)|g0 , at the chosen value of g0. The calibration
of the lattice spacing is then achieved via

a−1 [MeV] =
Q|exp [MeV]

(aQ)|g0
, (312)

where Q|exp denotes the experimentally known value of the reference quantity. Common
choices for Q are the mass of the nucleon, the Ω baryon or the decay constants of the pion
and the kaon. Vector mesons, such as the ρ or K∗-meson, are unstable and therefore their
masses are not very well suited for setting the scale, despite the fact that they have been used
over many years for that purpose.

Another widely used quantity to set the scale is the hadronic radius r0, which can be
determined from the force between static quarks via the relation [140]

F (r0)r
2
0 = 1.65. (313)

If the force is derived from potential models describing heavy quarkonia, the above relation
determines the value of r0 as r0 ≈ 0.5 fm. A variant of this procedure is obtained [141] by
using the definition F (r1)r

2
1 = 1.00, which yields r1 ≈ 0.32 fm. It is important to realize that

both r0 and r1 are not directly accessible in experiment, so that their values derived from phe-
nomenological potentials are necessarily model-dependent. Inspite of the inherent ambiguity
whenever hadronic radii are used to calibrate the lattice spacing, they are very useful quanti-
ties for performing scaling tests and continuum extrapolations of lattice data. Furthermore,
they can be easily computed with good statistical accuracy in lattice simulations.
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Abbrev. Discretization Leading lattice artifacts
and truncation errors
for heavy-light mesons

Remarks

tmWil twisted-mass Wilson O
(

(amh)
2
)

PCAC relation for axial-
vector current

HISQ Staggered O
(

αS(amh)
2(v/c),

(amh)
4(v/c)2

)

PCAC relation for axial-
vector current; Ward iden-
tity for vector current

static static effective action O
(

a2Λ2
QCD,ΛQCD/mh,

α2
s, α

2
saΛQCD

)

implementations use APE,
HYP1, and HYP2 smearing

HQET Heavy-Quark Effective Theory O
(

aΛ2
QCD/mh, a

2Λ2
QCD,

(ΛQCD/mh)
2
)

Nonperturbative matching
through O(1/mh)

NRQCD Nonrelativistic QCD O
(

αSΛQCD/mh,
αS(ΛQCD/mh)

2,
(ΛQCD/mh)

3, αsa
2Λ2

QCD

)

Tree-level relativistic correc-
tions through O(v4h) and dis-
cretization corrections through
O(a2)

Fermilab Sheikholeslami-Wohlert O
(

αsaΛQCD, (aΛQCD)
2
)

Hopping parameter tuned non-
perturbatively; clover coeffi-
cient computed at tree-level in
mean-field-improved lattice per-
turbation theory

RHQ Sheikholeslami-Wohlert O
(

α2
saΛQCD, (aΛQCD)

2
)

Hopping parameter, anisop-
tropy and clover coefficient
tuned nonperturbatively by
fixing the Bs-meson hyperfine
splitting

Tsukuba Sheikholeslami-Wohlert O
(

α2
saΛQCD, (aΛQCD)

2
)

NP clover coefficient at ma =
0 plus mass-dependent correc-
tions calculated at one-loop in
lattice perturbation theory; ν
calculated NP from dispersion
relation; rs calculated at one-
loop in lattice perturbation the-
ory

Table 53: Discretizations of the quark action most widely used for heavy c and b quarks and
some of their properties.
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A.3 Matching and running

The lattice formulation of QCD amounts to introducing a particular regularization scheme.
Thus, in order to be useful for phenomenology, hadronic matrix elements computed in lattice
simulations must be related to some continuum reference scheme, such as the MS-scheme of
dimensional regularization. The matching to the continuum scheme usually involves running
to some reference scale using the renormalization group.

In principle, the matching factors which relate lattice matrix elements to the MS-scheme,
can be computed in perturbation theory formulated in terms of the bare coupling. It has been
known for a long time, though, that the perturbative expansion is not under good control.
Several techniques have been developed which allow for a nonperturbative matching between
lattice regularization and continuum schemes, and are briefly introduced here.

Regularization-independent Momentum Subtraction

In the Regularization-independent Momentum Subtraction (“RI/MOM” or “RI”) scheme
[142] a nonperturbative renormalization condition is formulated in terms of Green functions
involving quark states in a fixed gauge (usually Landau gauge) at nonzero virtuality. In this
way one relates operators in lattice regularization nonperturbatively to the RI scheme. In a
second step one matches the operator in the RI scheme to its counterpart in the MS-scheme.
The advantage of this procedure is that the latter relation involves perturbation theory for-
mulated in the continuum theory. The uncontrolled use of lattice perturbation theory can
thus be avoided. A technical complication is associated with the accessible momentum scales
(i.e. virtualities), which must be large enough (typically several GeV) in order for the per-
turbative relation to MS to be reliable. The momentum scales in simulations must stay well
below the cutoff scale (i.e. 2π over the lattice spacing), since otherwise large lattice artifacts
are incurred. Thus, the applicability of the RI scheme traditionally relies on the existence of
a “window” of momentum scales, which satisfy

ΛQCD . p . 2πa−1. (314)

However, solutions for mitigating this limitation, which involve continuum limit, nonpertur-
bative running to higher scales in the RI/MOM scheme, have recently been proposed and
implemented [143–146].

Schrödinger functional

Another example of a nonperturbative matching procedure is provided by the Schrödinger
functional (SF) scheme [147]. It is based on the formulation of QCD in a finite volume. If
all quark masses are set to zero the box length remains the only scale in the theory, such
that observables like the coupling constant run with the box size L. The great advantage is
that the RG running of scale-dependent quantities can be computed nonperturbatively using
recursive finite-size scaling techniques. It is thus possible to run nonperturbatively up to
scales of, say, 100GeV, where one is sure that the perturbative relation between the SF and
MS-schemes is controlled.

Perturbation theory
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The third matching procedure is based on perturbation theory in which higher order are
effectively resummed [8]. Although this procedure is easier to implement, it is hard to esti-
mate the uncertainty associated with it.

Mostly nonperturbative renormalization

Some calculations of heavy-light and heavy-heavy matrix elements adopt a mostly non-
perturbative matching approach. Let us consider a weak decay process mediated by a current
with quark flavours h and q, where h is the initial heavy quark (either bottom or charm) and
q can be a light (ℓ = u, d), strange, or charm quark. The matrix elements of lattice current
Jhq are matched to the corresponding continuum matrix elements with continuum current
Jhq by calculating the renormalization factor ZJhq . The mostly nonperturbative renormaliza-
tion method takes advantage of rewriting the current renormalization factor as the following
product:

ZJhq = ρJhq

√
ZV 4

hh
ZV 4

qq
(315)

The flavour-conserving renormalization factors ZV 4
hh

and ZV 4
qq

can be obtained nonperturba-
tively from standard heavy-light and light-light meson charge normalization conditions. ZV 4

hh

and ZV 4
qq

account for the bulk of the renormalization. The remaining correction ρJhq is ex-
pected to be close to unity because most of the radiative corrections, including self-energy
corrections and contributions from tadpole graphs, cancel in the ratio [122, 125]. The one-
loop coefficients of ρJhq have been calculated for heavy-light and heavy-heavy currents for
Fermilab heavy and both (improved) Wilson light [122, 125] and asqtad light [148] quarks.
In all cases the one-loop coefficients are found to be very small, yielding sub-percent to few
percent level corrections.

In Table 54 we list the abbreviations used in the compilation of results together with a short
description.

Abbrev. Description

RI regularization-independent momentum subtraction scheme

SF Schrödinger functional scheme

PT1ℓ matching/running computed in perturbation theory at one loop

PT2ℓ matching/running computed in perturbation theory at two loops

mNPR mostly nonperturbative renormalization

Table 54: The most widely used matching and running techniques.

A.4 Chiral extrapolation

As mentioned in the introduction, Symanzik’s framework can be combined with Chiral Per-
turbation Theory. The well-known terms occurring in the chiral effective Lagrangian are then
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supplemented by contributions proportional to powers of the lattice spacing a. The additional
terms are constrained by the symmetries of the lattice action and therefore depend on the
specific choice of the discretization. The resulting effective theory can be used to analyse
the a-dependence of the various quantities of interest – provided the quark masses and the
momenta considered are in the range where the truncated chiral perturbation series yields an
adequate approximation. Understanding the dependence on the lattice spacing is of central
importance for a controlled extrapolation to the continuum limit.

For staggered fermions, this program has first been carried out for a single staggered
flavour (a single staggered field) [29] at O(a2). In the following, this effective theory is
denoted by SχPT. It was later generalized to an arbitrary number of flavours [30, 149], and
to next-to-leading order [31]. The corresponding theory is commonly called Rooted Staggered
chiral perturbation theory and is denoted by RSχPT.

For Wilson fermions, the effective theory has been developed in [150–152] and is called
WχPT, while the theory for Wilson twisted-mass fermions [153–155] is termed tmWχPT.

Another important approach is to consider theories in which the valence and sea quark
masses are chosen to be different. These theories are called partially quenched. The acronym
for the corresponding chiral effective theory is PQχPT [156–159].

Finally, one can also consider theories where the fermion discretizations used for the sea
and the valence quarks are different. The effective chiral theories for these “mixed action”
theories are referred to as MAχPT [37, 160–165].

Finite-Volume Regimes of QCD

Once QCD with Nf nondegenerate flavours is regulated both in the UV and in the IR,
there are 3 + Nf scales in play: The scale ΛQCD that reflects “dimensional transmutation”
(alternatively, one could use the pion decay constant or the nucleon mass, in the chiral limit),
the inverse lattice spacing 1/a, the inverse box size 1/L, as well as Nf meson masses (or
functions of meson masses) that are sensitive to the Nf quark masses, e.g. M2

π , 2M
2
K −M2

π

and the spin-averaged masses of 1S states of quarkonia.
Ultimately, we are interested in results with the two regulators removed, i.e. physical

quantities for which the limits a → 0 and L → ∞ have been carried out. In both cases there
is an effective field theory (EFT) which guides the extrapolation. For the a → 0 limit, this is a
version of the Symanzik EFT which depends, in its details, on the lattice action that is used,
as outlined in Sec. A.1. The finite-volume effects are dominated by the lightest particles,
the pions. Therefore, a chiral EFT, also known as χPT, is appropriate to parameterize
the finite-volume effects, i.e. the deviation of masses and other observables, such as matrix
elements, in a finite-volume from their infinite volume, physical values. Most simulations of
phenomenological interest are carried out in boxes of size L ≫ 1/Mπ, that is in boxes whose
diameter is large compared to the Compton wavelength that the pion would have, at the
given quark mass, in infinite volume. In this situation the finite-volume corrections are small,
and in many cases the ratio Mhad(L)/Mhad or f(L)/f , where f denotes some generic matrix
element, can be calculated in χPT, such that the leading finite-volume effects can be taken
out analytically. In the terminology of χPT this setting is referred to as the p-regime, as the
typical contributing momenta p ∼ Mπ ≫ 1/L. A peculiar situation occurs if the condition
L ≫ 1/Mπ is violated (while LΛQCD ≫ 1 still holds), in other words if the quark mass is taken
so light that the Compton wavelength that the pion would have (at the given mq) in infinite
volume, is as large or even larger than the actual box size. Then the pion zero-momentum
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mode dominates and needs to be treated separately. While this setup is unlikely to be useful
for standard phenomenological computations, the low-energy constants of χPT can still be
calculated, by matching to a re-ordered version of the chiral series, and following the details of
the reordering such an extreme regime is called the ǫ- or δ-regime, respectively. Accordingly,
further particulars of these regimes are discussed in subsection 5.1 of this report.

A.5 Summary of simulated lattice actions

In the following tables 55, 56, 57, 58 and 59 we summarize the gauge and quark actions used
in the various calculations with Nf = 2, 2 + 1 and 2 + 1 + 1 quark flavours. The calculations
with Nf = 0 quark flavours mentioned in Sec. 9 all used the Wilson gauge action and are
not listed. Abbreviations are explained in Secs. A.1.1, A.1.2 and A.1.3, and summarized in
Tabs. 51, 52 and 53.

Collab. Ref. Nf

gauge
action

quark
action

ALPHA 01A, 04, 05, 12, 13A [166–170] 2 Wilson npSW

Aoki 94 [171] 2 Wilson KS

Bernardoni 10 [172] 2 Wilson npSW †

Bernardoni 11 [173] 2 Wilson npSW

Brandt 13 [174] 2 Wilson npSW

Boucaud 01B [175] 2 Wilson Wilson

CERN-TOV 06 [176] 2 Wilson Wilson/npSW

CERN 08 [177] 2 Wilson npSW

CP-PACS 01 [178] 2 Iwasaki mfSW

Davies 94 [179] 2 Wilson KS

Dürr 11 [180] 2 Wilson npSW

Engel 14 [181] 2 Wilson npSW

† The calculation uses overlap fermions in the valence quark sector.

Table 55: Summary of simulated lattice actions with Nf = 2 quark flavours.
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Collab. Ref. Nf

gauge
action

quark
action

ETM 07, 07A, 08, 09, 09A-
D, 10B, 10D, 10F, 11C, 12,
13, 13A

[137, 182–195] 2 tlSym tmWil

ETM 10A, 12D [196, 197] 2 tlSym tmWil ∗

ETMC 14D, 15A [198, 199] 2 Iwasaki tmWil with npSW

Gülpers 13, 15 [200, 201] 2 Wilson npSW

Hasenfratz 08 [202] 2 tadSym n-HYP tlSW

JLQCD 08 [203] 2 Iwasaki overlap

JLQCD 02, 05 [204, 205] 2 Wilson npSW

JLQCD/TWQCD 07, 08A, 10 [206–208] 2 Iwasaki overlap

QCDSF 07, 13 [209, 210] 2 Wilson npSW

QCDSF/UKQCD 04, 06, 06A, 07 [211–214] 2 Wilson npSW

RBC 04, 06, 07 [215–217] 2 DBW2 DW

RBC/UKQCD 07 [218] 2 Wilson npSW

RM123 11, 13 [219, 220] 2 tlSym tmWil

Sesam 99 [221] 2 Wilson Wilson

Sternbeck 10, 12 [222, 223] 2 Wilson npSW

SPQcdR 05 [224] 2 Wilson Wilson

TWQCD 11, 11A [225, 226] 2 Wilson optimal DW

UKQCD 04 [218, 227] 2 Wilson npSW

Wingate 95 [228] 2 Wilson KS

∗ The calculation uses Osterwalder-Seiler fermions [229] in the valence quark sector.

Table 55: (cntd.) Summary of simulated lattice actions with Nf = 2 quark flavours.
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Collab. Ref. Nf

gauge
action

quark
action

Aubin 08, 09 [230, 231] 2 + 1 tadSym Asqtad †

Blum 10 [232] 2 + 1 Iwasaki DW

BMW 10A-C, 11, 13 [144, 145, 233–235] 2 + 1 tlSym 2-level HEX tlSW

BMW 10 [236] 2 + 1 tlSym 6-level stout tlSW

Boyle 14 [237] 2 + 1 Iwasaki,
Iwasaki+DSDR

DW

CP-PACS/JLQCD 07 [238] 2 + 1 Iwasaki npSW

FNAL/MILC 12, 12I [239, 240] 2 + 1 tadSym Asqtad

HPQCD 05, 05A, 08A, 13A [241–244] 2 + 1 tadSym Asqtad

HPQCD 10 [245] 2 + 1 tadSym Asqtad ∗

HPQCD/UKQCD 06 [246] 2 + 1 tadSym Asqtad

HPQCD/UKQCD 07 [247] 2 + 1 tadSym Asqtad ∗

HPQCD/MILC/UKQCD 04 [248] 2 + 1 tadSym Asqtad

JLQCD 09, 10 [249, 250] 2 + 1 Iwasaki overlap

JLQCD 11, 12, 14, 15A [251–254] 2 + 1 Iwasaki (fixed topology) overlap

JLQCD 15B [255] 2 + 1 Iwasaki M-DW

JLQCD/TWQCD 08B, 09A [256, 257] 2 + 1 Iwasaki overlap

JLQCD/TWQCD 10 [208] 2 + 1, 3 Iwasaki overlap

† The calculation uses domain wall fermions in the valence-quark sector.
∗ The calculation uses HISQ staggered fermions in the valence-quark sector.

Table 56: Summary of simulated lattice actions with Nf = 2 + 1 or Nf = 3 quark flavours.
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Collab. Ref. Nf

gauge
action

quark
action

Laiho 11 [258] 2 + 1 tadSym Asqtad †

LHP 04 [259] 2 + 1 tadSym Asqtad †

Maltman 08 [260] 2 + 1 tadSym Asqtad

MILC 04, 07, 09, 09A, 10, 10A [46, 47, 248, 261–263] 2 + 1 tadSym Asqtad

NPLQCD 06 [264] 2 + 1 tadSym Asqtad †

PACS-CS 08, 08A, 09, 09A, 10, 11A, 12 [135, 265–269] 2 + 1 Iwasaki npSW

QCDSF/UKQCD 15 [270] 2 + 1 tlSym npSW

RBC/UKQCD 07, 08, 08A,
10, 10A-B, 11, 12, 13

[82, 146, 271–277] 2 + 1 Iwasaki,
Iwasaki+DSDR

DW

RBC/UKQCD 12E [278] 2 + 1 Iwasaki DW

RBC/UKQCD 14B, 15A, 15E [279–281] 2 + 1 Iwasaki,
Iwasaki+DSDR

DW, M-DW

Sternbeck 12 [223] 2 + 1 tlSym npSW

SWME 10, 11, 11A, 13, 13A,
14A, 14C, 15A

[38, 282–288] 2 + 1 tadSym Asqtad+

TWQCD 08 [289] 2 + 1 Iwasaki DW

† The calculation uses domain wall fermions in the valence-quark sector.
+ The calculation uses HYP smeared improved staggered fermions in the valence-quark sector.

Table 56: (cntd.) Summary of simulated lattice actions with Nf = 2 + 1 or Nf = 3 quark
flavours.
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Collab. Ref. Nf

gauge
action

quark
action

ALPHA 10A [290] 4 Wilson npSW

Bazavov 12 [291] 2 + 1 + 1 tlSym HISQ

ETM 10, 10E, 11, 11D, 12C,
13, 13A, 13D

[194, 195, 292–
297]

2 + 1 + 1 Iwasaki tmWil

ETM 14A, 14B, 15, 15C [298–301] 2 + 1 + 1 Iwasaki tmWil +

FNAL/MILC 12B, 13, 13C, 13E, 14A [302–306] 2 + 1 + 1 tadSym HISQ

HPQCD 14A, 15B [307, 308] 2 + 1 + 1 tadSym HISQ

MILC 13A [309] 2 + 1 + 1 tadSym HISQ

Perez 10 [310] 4 Wilson npSW

+ The calculation uses Osterwalder-Seiler fermions [229] in the valence-quark sector.

Table 57: Summary of simulated lattice actions with Nf = 4 or Nf = 2+1+1 quark flavours.

Collab. Ref. Nf Gauge Quark actions
action sea light valence heavy

ALPHA 11, 12A, 13, 14,
14B

[114, 311–314] 2 plaquette npSW npSW HQET

ALPHA 13C [315] 2 plaquette npSW npSW npSW

Atoui 13 [316] 2 tlSym tmWil tmWil tmWil

ETM 09, 09D, 11B, 12A,
12B, 13B, 13C

[137, 185, 317–
321]

2 tlSym tmWil tmWil tmWil

ETM 11A [104] 2 tlSym tmWil tmWil tmWil, static

TWQCD 14 [322] 2 plaquette oDW oDW oDW

Table 58: Summary of lattice simulations Nf = 2 sea quark flavours and with b and c valence
quarks.
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Collab. Ref. Nf Gauge Quark actions
action sea light valence heavy

χQCD 14 [323] 2+1 Iwasaki DW overlap overlap

FNAL/MILC 04, 04A,
05, 08, 08A, 10, 11, 11A,
12, 13B

[239, 324–332] 2+1 tadSym Asqtad Asqtad Fermilab

FNAL/MILC 14, 15C [333, 334] 2+1 tadSym Asqtad Asqtad∗ Fermilab∗

FNAL/MILC 15 [335] 2+1 tadSym Asqtad Asqtad Fermilab

HPQCD 06, 06A, 08B,
09, 13B

[336–340] 2+1 tadSym Asqtad Asqtad NRQCD

HPQCD 12 [341] 2+1 tadSym Asqtad HISQ NRQCD

HPQCD 15 [342] 2+1 tadSym Asqtad HISQ† NRQCD†

HPQCD/UKQCD 07,
HPQCD 10A, 10B, 11,
11A, 12A, 13C

[105, 247, 343–
347]

2+1 tadSym Asqtad HISQ HISQ

PACS-CS 11 [133] 2+1 Iwasaki npSW npSW Tsukuba

RBC/UKQCD 10C, 14A [106, 348] 2+1 Iwasaki DW DW static

RBC/UKQCD 13A, 14, 15 [349–351] 2+1 Iwasaki DW DW RHQ

ETM 13E, 13F, 14E [352–354] 2+1+1 Iwasaki tmWil tmWil tmWil

FNAL/MILC 12B, 13, 14A [302, 303, 306] 2+1+1 tadSym HISQ HISQ HISQ

HPQCD 13 [355] 2+1+1 tadSym HISQ HISQ NRQCD

∗ Asqtad for u, d and s quark; Fermilab for b and c quark.
† HISQ for u, d, s and c quark; NRQCD for b quark.

Table 59: Summary of lattice simulations with Nf = 2+1 or Nf = 2+1+1 sea quark flavours
and b and c valence quarks.
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[73] M. Lüscher, Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation,
Phys. Lett. B428 (1998) 342–345, [hep-lat/9802011].

[74] P. H. Ginsparg and K. G. Wilson, A remnant of chiral symmetry on the lattice,
Phys. Rev. D25 (1982) 2649.

[75] H. B. Nielsen and M. Ninomiya, No go theorem for regularizing chiral fermions,
Phys. Lett. B105 (1981) 219.

[76] H. Neuberger, Exactly massless quarks on the lattice,
Phys. Lett. B417 (1998) 141–144, [hep-lat/9707022].

[77] D. B. Kaplan, A method for simulating chiral fermions on the lattice,
Phys. Lett. B288 (1992) 342–347, [hep-lat/9206013].

[78] Y. Shamir, Chiral fermions from lattice boundaries, Nucl. Phys. B406 (1993) 90–106,
[hep-lat/9303005].

[79] V. Furman and Y. Shamir, Axial symmetries in lattice QCD with Kaplan fermions,
Nucl. Phys. B439 (1995) 54–78, [hep-lat/9405004].

[80] T. Blum and A. Soni, QCD with domain wall quarks, Phys.Rev. D56 (1997) 174–178,
[hep-lat/9611030].

[81] S. R. Sharpe, Future of Chiral Extrapolations with Domain Wall Fermions, 0706.0218.

[82] [RBC/UKQCD 12] R. Arthur et al., Domain wall QCD with near-physical pions,
Phys.Rev. D87 (2013) 094514, [1208.4412].

[83] A. Borici, Truncated overlap fermions, Nucl.Phys.Proc.Suppl. 83 (2000) 771–773,
[hep-lat/9909057].

[84] A. Borici, Truncated overlap fermions: The link between overlap and domain wall
fermions, hep-lat/9912040.

[85] W. Bietenholz and U. Wiese, Perfect lattice actions for quarks and gluons,
Nucl.Phys. B464 (1996) 319–352, [hep-lat/9510026].

32

http://arxiv.org/abs/1607.00299
http://dx.doi.org/10.1103/PhysRevD.64.034504
http://arxiv.org/abs/hep-lat/0103029
http://dx.doi.org/10.1016/0550-3213(89)90394-5
http://dx.doi.org/10.1103/PhysRevD.59.074502
http://arxiv.org/abs/hep-lat/9809157
http://dx.doi.org/10.1016/S0550-3213(98)00399-X
http://arxiv.org/abs/hep-lat/9802007
http://dx.doi.org/10.1016/S0370-2693(98)00315-3
http://arxiv.org/abs/hep-lat/9801021
http://dx.doi.org/10.1016/S0370-2693(98)00423-7
http://arxiv.org/abs/hep-lat/9802011
http://dx.doi.org/10.1103/PhysRevD.25.2649
http://dx.doi.org/10.1016/0370-2693(81)91026-1
http://dx.doi.org/10.1016/S0370-2693(97)01368-3
http://arxiv.org/abs/hep-lat/9707022
http://dx.doi.org/10.1016/0370-2693(92)91112-M
http://arxiv.org/abs/hep-lat/9206013
http://dx.doi.org/10.1016/0550-3213(93)90162-I
http://arxiv.org/abs/hep-lat/9303005
http://dx.doi.org/10.1016/0550-3213(95)00031-M
http://arxiv.org/abs/hep-lat/9405004
http://dx.doi.org/10.1103/PhysRevD.56.174
http://arxiv.org/abs/hep-lat/9611030
http://arxiv.org/abs/0706.0218
http://dx.doi.org/10.1103/PhysRevD.87.094514
http://arxiv.org/abs/1208.4412
http://arxiv.org/abs/hep-lat/9909057
http://arxiv.org/abs/hep-lat/9912040
http://dx.doi.org/10.1016/0550-3213(95)00678-8
http://arxiv.org/abs/hep-lat/9510026


S. Aoki et al., Review of lattice results concerning low-energy particle physics, 1607.00299

[86] P. Hasenfratz et al., The construction of generalized Dirac operators on the lattice,
Int. J. Mod. Phys. C12 (2001) 691–708, [hep-lat/0003013].

[87] P. Hasenfratz, S. Hauswirth, T. Jörg, F. Niedermayer and K. Holland, Testing the
fixed-point QCD action and the construction of chiral currents,
Nucl. Phys. B643 (2002) 280–320, [hep-lat/0205010].

[88] C. Gattringer, A new approach to Ginsparg-Wilson fermions,
Phys. Rev. D63 (2001) 114501, [hep-lat/0003005].

[89] A. Hasenfratz, R. Hoffmann and S. Schaefer, Hypercubic smeared links for dynamical
fermions, JHEP 05 (2007) 029, [hep-lat/0702028].

[90] C. Morningstar and M. J. Peardon, Analytic smearing of SU(3) link variables in
lattice QCD, Phys. Rev. D69 (2004) 054501, [hep-lat/0311018].
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QCD with light Wilson quarks on fine lattices (I): first experiences and physics results,
JHEP 02 (2007) 056, [hep-lat/0610059].
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[209] [QCDSF 07] D. Brömmel et al., Kaon semileptonic decay form factors from Nf = 2
non-perturbatively O(a)-improved Wilson fermions, PoS LAT2007 (2007) 364,
[0710.2100].

[210] [QCDSF 13] R. Horsley, Y. Nakamura, A. Nobile, P. Rakow, G. Schierholz et al.,
Nucleon axial charge and pion decay constant from two-flavor lattice QCD,
Phys. Lett. B732 (2014) 41–48, [1302.2233].
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[234] [BMW 11] S. Dürr, Z. Fodor, C. Hoelbling, S. Katz, S. Krieg et al., Precision
computation of the kaon bag parameter, Phys.Lett. B705 (2011) 477–481, [1106.3230].
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