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3 Quark masses

Quark masses are fundamental parameters of the Standard Model. An accurate determination
of these parameters is important for both phenomenological and theoretical applications.
The charm and bottom masses, for instance, enter the theoretical expressions of several cross
sections and decay rates in heavy-quark expansions. The up-, down- and strange-quark masses
govern the amount of explicit chiral symmetry breaking in QCD. From a theoretical point of
view, the values of quark masses provide information about the flavour structure of physics
beyond the Standard Model. The Review of Particle Physics of the Particle Data Group
contains a review of quark masses [1], which covers light as well as heavy flavours. Here we
also consider light- and heavy- quark masses, but focus on lattice results and discuss them
in more detail. We do not discuss the top quark, however, because it decays weakly before
it can hadronize, and the nonperturbative QCD dynamics described by present day lattice
simulations is not relevant. The lattice determination of light- (up, down, strange), charm-
and bottom-quark masses is considered below in Secs. 3.1, 3.2, and 3.3, respectively.

Quark masses cannot be measured directly in experiment because quarks cannot be iso-
lated, as they are confined inside hadrons. On the other hand, quark masses are free pa-
rameters of the theory and, as such, cannot be obtained on the basis of purely theoretical
considerations. Their values can only be determined by comparing the theoretical predic-
tion for an observable, which depends on the quark mass of interest, with the corresponding
experimental value.

In the last edition of this review [2], quark-mass determinations came from two- and
three-flavour QCD calculations. Moreover, these calculations were most often performed in
the isospin limit, where the up- and down-quark masses (especially those in the sea) are set
equal. In addition, some of the results retained in our light-quark mass averages were based on
simulations performed at values of mud which were still substantially larger than its physical
value imposing a significant extrapolation to reach the physical up- and down-quark mass
point. Among the calculations performed near physical mud by PACS-CS [3–5], BMW [6, 7]
and RBC/UKQCD [8], only the ones in Refs. [6, 7] did so while controlling all other sources
of systematic error.

Today, however, the effects of the charm quark in the sea are more and more systemati-
cally considered and most of the new quark-mass results discussed below have been obtained
in Nf = 2+ 1 + 1 simulations by ETM [9], HPQCD [10] and FNAL/MILC [11]. In addition,
RBC/UKQCD [12], HPQCD [10] and FNAL/MILC [11] are extending their calculations down
to up-down-quark masses at or very close to their physical values while still controlling other
sources of systematic error. Another aspect that is being increasingly addressed are elec-
tromagnetic and (md −mu), strong isospin-breaking effects. As we will see below these are
particularly important for determining the individual up- and down-quark masses. But with
the level of precision being reached in calculations, these effects are also becoming important
for other quark masses.

Three-flavour QCD has four free parameters: the strong coupling, αs (alternatively ΛQCD)
and the up-, down- and strange-quark masses, mu, md and ms. Four-flavour calculations have
an additional parameter, the charm-quark mass mc. When the calculations are performed in
the isospin limit, up- and down-quark masses are replaced by a single parameter: the isospin-
averaged up- and down-quark mass, mud = 1

2(mu + md). A lattice determination of these
parameters, and in particular of the quark masses, proceeds in two steps:
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1. One computes as many experimentally measurable quantities as there are quark masses.
These observables should obviously be sensitive to the masses of interest, preferably
straightforward to compute and obtainable with high precision. They are usually com-
puted for a variety of input values of the quark masses which are then adjusted to
reproduce experiment. Another observable, such as the pion decay constant or the
mass of a member of the baryon octet, must be used to fix the overall scale. Note that
the mass of a quark, such as the b, which is not accounted for in the generation of gauge
configurations, can still be determined. For that an additional valence-quark observable
containing this quark must be computed and the mass of that quark must be tuned to
reproduce experiment.

2. The input quark masses are bare parameters which depend on the lattice spacing and
particulars of the lattice regularization used in the calculation. To compare their values
at different lattice spacings and to allow a continuum extrapolation they must be renor-
malized. This renormalization is a short-distance calculation, which may be performed
perturbatively. Experience shows that 1-loop calculations are unreliable for the renor-
malization of quark masses: usually at least two loops are required to have trustworthy
results. Therefore, it is best to perform the renormalizations nonperturbatively to avoid
potentially large perturbative uncertainties due to neglected higher-order terms. Nev-
ertheless we will include in our averages 1-loop results if they carry a solid estimate of
the systematic uncertainty due to the truncation of the series.

In the absence of electromagnetic corrections, the renormalization factors for all quark masses
are the same at a given lattice spacing. Thus, uncertainties due to renormalization are absent
in ratios of quark masses if the tuning of the masses to their physical values can be done
lattice spacing by lattice spacing and significantly reduced otherwise.

We mention that lattice QCD calculations of the b-quark mass have an additional compli-
cation which is not present in the case of the charm- and light-quarks. At the lattice spacings
currently used in numerical simulations the direct treatment of the b quark with the fermionic
actions commonly used for light quarks will result in large cutoff effects, because the b-quark
mass is of order one in lattice units. There are a few widely used approaches to treat the b
quark on the lattice, which have been already discussed in the FLAG 13 review (see Section 8
of Ref. [2]). Those relevant for the determination of the b-quark mass will be briefly described
in Sec. 3.3.

3.1 Masses of the light quarks

Light-quark masses are particularly difficult to determine because they are very small (for the
up and down quarks) or small (for the strange quark) compared to typical hadronic scales.
Thus, their impact on typical hadronic observables is minute, and it is difficult to isolate their
contribution accurately.

Fortunately, the spontaneous breaking of SU(3)L × SU(3)R chiral symmetry provides
observables which are particularly sensitive to the light-quark masses: the masses of the
resulting Nambu-Goldstone bosons (NGB), i.e. pions, kaons and etas. Indeed, the Gell-Mann-
Oakes-Renner relation [13] predicts that the squared mass of a NGB is directly proportional to
the sum of the masses of the quark and antiquark which compose it, up to higher-order mass
corrections. Moreover, because these NGBs are light and are composed of only two valence
particles, their masses have a particularly clean statistical signal in lattice-QCD calculations.
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In addition, the experimental uncertainties on these meson masses are negligible. Thus,
in lattice calculations, light-quark masses are typically obtained by renormalizing the input
quark mass and tuning them to reproduce NGB masses, as described above.

3.1.1 Contributions from the electromagnetic interaction

As mentioned in Sec. 2.1, the present review relies on the hypothesis that, at low energies, the
Lagrangian LQCD+LQED describes nature to a high degree of precision. However, most of the
results presented below are obtained in pure QCD calculations, which do not include QED.
Quite generally, when comparing QCD calculations with experiment, radiative corrections
need to be applied. In pure QCD simulations, where the parameters are fixed in terms of
the masses of some of the hadrons, the electromagnetic contributions to these masses must
be accounted for. Of course, once QED is included in lattice calculations, the subtraction of
e.m. contributions is no longer necessary.

The electromagnetic interaction plays a particularly important role in determinations
of the ratio mu/md, because the isospin-breaking effects generated by this interaction are
comparable to those from mu 6= md (see Subsection 3.1.5). In determinations of the ratio
ms/mud, the electromagnetic interaction is less important, but at the accuracy reached, it
cannot be neglected. The reason is that, in the determination of this ratio, the pion mass
enters as an input parameter. Because Mπ represents a small symmetry-breaking effect, it is
rather sensitive to the perturbations generated by QED.

The decomposition of the sum LQCD + LQED into two parts is not unique and specifying
the QCD part requires a convention. In order to give results for the quark masses in the
Standard Model at scale µ = 2GeV, on the basis of a calculation done within QCD, it is
convenient to match the parameters of the two theories at that scale. We use this convention
throughout the present review.1

Such a convention allows us to distinguish the physical mass MP , P ∈ {π+, π0, K+,
K0}, from the mass M̂P within QCD. The e.m. self-energy is the difference between the two,
Mγ

P ≡ MP − M̂P . Because the self-energy of the Nambu-Goldstone bosons diverges in the
chiral limit, it is convenient to replace it by the contribution of the e.m. interaction to the
square of the mass,

∆γ
P ≡ M2

P − M̂2
P = 2MPM

γ
P +O(e4) . (9)

The main effect of the e.m. interaction is an increase in the mass of the charged particles,
generated by the photon cloud that surrounds them. The self-energies of the neutral ones
are comparatively small, particularly for the Nambu-Goldstone bosons, which do not have a
magnetic moment. Dashen’s theorem [19] confirms this picture, as it states that, to leading
order (LO) of the chiral expansion, the self-energies of the neutral NGBs vanish, while the
charged ones obey ∆γ

K+ = ∆γ
π+ . It is convenient to express the self-energies of the neutral

particles as well as the mass difference between the charged and neutral pions within QCD
in units of the observed mass difference, ∆π ≡ M2

π+ −M2
π0 :

∆γ
π0 ≡ ǫπ0 ∆π , ∆γ

K0 ≡ ǫK0 ∆π , M̂2
π+ − M̂2

π0 ≡ ǫm∆π . (10)

1Note that a different convention is used in the analysis of the precision measurements carried out in low-
energy pion physics (e.g. Ref. [14]). When comparing lattice results with experiment, it is important to fix
the QCD parameters in accordance with the convention used in the analysis of the experimental data (for a
more detailed discussion, see Refs. [15–18]).
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In this notation, the self-energies of the charged particles are given by

∆γ
π+ = (1 + ǫπ0 − ǫm)∆π , ∆γ

K+ = (1 + ǫ+ ǫK0 − ǫm)∆π , (11)

where the dimensionless coefficient ǫ parameterizes the violation of Dashen’s theorem, 2

∆γ
K+ −∆γ

K0 −∆γ
π+ +∆γ

π0 ≡ ǫ∆π . (12)

Any determination of the light-quark masses based on a calculation of the masses of π+,K+

and K0 within QCD requires an estimate for the coefficients ǫ, ǫπ0 , ǫK0 and ǫm.
The first determination of the self-energies on the lattice was carried out by Duncan,

Eichten and Thacker [21]. Using the quenched approximation, they arrived at Mγ
K+ −Mγ

K0 =
1.9MeV. Actually, the parameterization of the masses given in that paper yields an estimate
for all but one of the coefficients introduced above (since the mass splitting between the
charged and neutral pions in QCD is neglected, the parameterization amounts to setting
ǫm = 0 ab initio). Evaluating the differences between the masses obtained at the physical value
of the electromagnetic coupling constant and at e = 0, we obtain ǫ = 0.50(8), ǫπ0 = 0.034(5)
and ǫK0 = 0.23(3). The errors quoted are statistical only: an estimate of lattice systematic
errors is not possible from the limited results of Ref. [21]. The result for ǫ indicates that
the violation of Dashen’s theorem is sizeable: according to this calculation, the nonleading
contributions to the self-energy difference of the kaons amount to 50% of the leading term.
The result for the self-energy of the neutral pion cannot be taken at face value, because it
is small, comparable to the neglected mass difference M̂π+ − M̂π0 . To illustrate this, we
note that the numbers quoted above are obtained by matching the parameterization with the
physical masses for π0, K+ and K0. This gives a mass for the charged pion that is too high
by 0.32 MeV. Tuning the parameters instead such that Mπ+ comes out correctly, the result
for the self-energy of the neutral pion becomes larger: ǫπ0 = 0.10(7) where, again, the error
is statistical only.

In an update of this calculation by the RBC collaboration [22] (RBC 07), the electromag-
netic interaction is still treated in the quenched approximation, but the strong interaction is
simulated withNf = 2 dynamical quark flavours. The quark masses are fixed with the physical
masses of π0, K+ and K0. The outcome for the difference in the electromagnetic self-energy
of the kaons reads Mγ

K+ −Mγ
K0 = 1.443(55)MeV. This corresponds to a remarkably small vi-

olation of Dashen’s theorem. Indeed, a recent extension of this work to Nf = 2+1 dynamical
flavours [20] leads to a significantly larger self-energy difference: Mγ

K+−Mγ
K0 = 1.87(10)MeV,

in good agreement with the estimate of Eichten et al. Expressed in terms of the coefficient ǫ
that measures the size of the violation of Dashen’s theorem, it corresponds to ǫ = 0.5(1).

The input for the electromagnetic corrections used by MILC is specified in Ref. [23]. In
their analysis of the lattice data, ǫπ0 , ǫK0 and ǫm are set equal to zero. For the remaining
coefficient, which plays a crucial role in determinations of the ratio mu/md, the very conser-
vative range ǫ = 1(1) was used in MILC 04 [24], while in MILC 09 [25] and MILC 09A [26]
this input has been replaced by ǫ = 1.2(5), as suggested by phenomenological estimates for
the corrections to Dashen’s theorem [27, 28]. Results of an evaluation of the electromagnetic
self-energies based on Nf = 2 + 1 dynamical quarks in the QCD sector and on the quenched
approximation in the QED sector have been also reported by MILC in Refs. [29–31] and

2Sometimes, e.g. in Ref. [20], the violation of Dashen’s theorem is given in terms of a different quantity,
ǭ ≡ (∆γ

K+ −∆γ

K0)/(∆
γ

π+ −∆γ

π0) − 1. This parameter is related to ǫ used here through ǫ = (1 − ǫm)ǭ. Given
the value of ǫm (see Eq. (13)), these two quantities differ by 4% only.
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updated recently in Refs. [32, 33]. Their latest (preliminary) result is ǭ = 0.84(5)(19), where
the first error is statistical and the second systematic, coming from discretization and finite-
volume uncertainties added in quadrature. With the estimate for ǫm given in Eq. (13), this
result corresponds to ǫ = 0.81(5)(18).

Preliminary results have been also reported by the BMW collaboration in conference
proceedings [34–36], with the updated result being ǫ = 0.57(6)(6), where the first error is
statistical and the second systematic.

The RM123 collaboration employs a new technique to compute e.m. shifts in hadron
masses in 2-flavour QCD: the effects are included at leading order in the electromagnetic
coupling α through simple insertions of the fundamental electromagnetic interaction in quark
lines of relevant Feynman graphs [37]. They find ǫ = 0.79(18)(18), where the first error is
statistical and the second is the total systematic error resulting from chiral, finite-volume,
discretization, quenching and fitting errors all added in quadrature.

Recently [38] the QCDSF/UKQCD collaboration has presented results for several pseu-
doscalar meson masses obtained from Nf = 2+ 1 dynamical simulations of QCD + QED (at
a single lattice spacing a ≃ 0.07 fm). Using the experimental values of the π0, K0 and K+

mesons masses to fix the three light-quark masses, they find ǫ = 0.50(6), where the error is
statistical only.

The effective Lagrangian that governs the self-energies to next-to-leading order (NLO) of
the chiral expansion was set up in Ref. [39]. The estimates made in Refs. [27, 28] are obtained
by replacing QCD with a model, matching this model with the effective theory and assuming
that the effective coupling constants obtained in this way represent a decent approximation
to those of QCD. For alternative model estimates and a detailed discussion of the problems
encountered in models based on saturation by resonances, see Refs. [40–42]. In the present
review of the information obtained on the lattice, we avoid the use of models altogether.

There is an indirect phenomenological determination of ǫ, which is based on the decay
η → 3π and does not rely on models. The result for the quark-mass ratioQ, defined in Eq. (32)
and obtained from a dispersive analysis of this decay, implies ǫ = 0.70(28) (see Sec. 3.1.5).
While the values found in older lattice calculations [20–22] are a little less than one standard
deviation lower, the most recent determinations [29–35, 37, 43], though still preliminary, are
in excellent agreement with this result and have significantly smaller error bars. However,
even in the more recent calculations, e.m. effects are treated in the quenched approximation.
Thus, we choose to quote ǫ = 0.7(3), which is essentially the η → 3π result and covers the
range of post-2010 lattice results. Note that this value has an uncertainty which is reduced
by about 40% compared to the result quoted in the first edition of the FLAG review [44].

We add a few comments concerning the physics of the self-energies and then specify the
estimates used as an input in our analysis of the data. The Cottingham formula [45] represents
the self-energy of a particle as an integral over electron scattering cross sections; elastic as
well as inelastic reactions contribute. For the charged pion, the term due to elastic scattering,
which involves the square of the e.m. form factor, makes a substantial contribution. In
the case of the π0, this term is absent, because the form factor vanishes on account of charge
conjugation invariance. Indeed, the contribution from the form factor to the self-energy of the
π+ roughly reproduces the observed mass difference between the two particles. Furthermore,
the numbers given in Refs. [46–48] indicate that the inelastic contributions are significantly
smaller than the elastic contributions to the self-energy of the π+. The low-energy theorem
of Das, Guralnik, Mathur, Low and Young [49] ensures that, in the limit mu,md → 0, the
e.m. self-energy of the π0 vanishes, while the one of the π+ is given by an integral over
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the difference between the vector and axial-vector spectral functions. The estimates for ǫπ0

obtained in Ref. [21] and more recently in Ref. [38] are consistent with the suppression of the
self-energy of the π0 implied by chiral SU(2) × SU(2). In our opinion, as already done in
the FLAG 13 review [2], the value ǫπ0 = 0.07(7) still represents a quite conservative estimate
for this coefficient. The self-energy of the K0 is suppressed less strongly, because it remains
different from zero if mu and md are taken massless and only disappears if ms is turned off
as well. Note also that, since the e.m. form factor of the K0 is different from zero, the self-
energy of the K0 does pick up an elastic contribution. The recent lattice result ǫK0 = 0.2(1)
obtained in Ref. [38] indicates that the violation of Dashen’s theorem is smaller than in the
case of ǫ. Following the FLAG 13 review [2] we confirm the choice of the conservative value
ǫK0 = 0.3(3).

Finally, we consider the mass splitting between the charged and neutral pions in QCD.
This effect is known to be very small, because it is of second order in mu − md. There
is a parameter-free prediction, which expresses the difference M̂2

π+ − M̂2
π0 in terms of the

physical masses of the pseudoscalar octet and is valid to NLO of the chiral perturbation
series. Numerically, the relation yields ǫm = 0.04 [50], indicating that this contribution
does not play a significant role at the present level of accuracy. We attach a conservative
error also to this coefficient: ǫm = 0.04(2). The lattice result for the self-energy difference
of the pions, reported in Ref. [20], Mγ

π+ − Mγ
π0 = 4.50(23)MeV, agrees with this estimate:

expressed in terms of the coefficient ǫm that measures the pion-mass splitting in QCD, the
result corresponds to ǫm = 0.04(5). The corrections of next-to-next-to-leading order (NNLO)
have been worked out in Ref. [51], but the numerical evaluation of the formulae again meets
with the problem that the relevant effective coupling constants are not reliably known.

In summary, we use the following estimates for the e.m. corrections:

ǫ = 0.7(3) , ǫπ0 = 0.07(7) , ǫK0 = 0.3(3) , ǫm = 0.04(2) . (13)

While the range used for the coefficient ǫ affects our analysis in a significant way, the numerical
values of the other coefficients only serve to set the scale of these contributions. The range
given for ǫπ0 and ǫK0 may be overly generous, but because of the exploratory nature of the
lattice determinations, we consider it advisable to use a conservative estimate.

Treating the uncertainties in the four coefficients as statistically independent and adding
errors in quadrature, the numbers in Eq. (13) yield the following estimates for the e.m. self-
energies,

Mγ
π+ = 4.7(3)MeV , Mγ

π0 = 0.3(3)MeV , Mγ
π+ −Mγ

π0 = 4.4(1)MeV , (14)

Mγ
K+ = 2.5(5)MeV , Mγ

K0 = 0.4(4)MeV , Mγ
K+ −Mγ

K0 = 2.1(4)MeV ,

and for the pion and kaon masses occurring in the QCD sector of the Standard Model,

M̂π+ = 134.8(3)MeV , M̂π0 = 134.6(3)MeV , M̂π+ − M̂π0 = 0.2(1)MeV , (15)

M̂K+ = 491.2(5)MeV , M̂K0 = 497.2(4)MeV , M̂K+ − M̂K0 = −6.1(4)MeV .

The self-energy difference between the charged and neutral pion involves the same coefficient
ǫm that describes the mass difference in QCD – this is why the estimate for Mγ

π+ −Mγ
π0 is so

precise.
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3.1.2 Pion and kaon masses in the isospin limit

As mentioned above, most of the lattice calculations concerning the properties of the light
mesons are performed in the isospin limit of QCD (mu − md → 0 at fixed mu + md). We
denote the pion and kaon masses in that limit byMπ andMK , respectively. Their numerical
values can be estimated as follows. Since the operation u ↔ d interchanges π+ with π− and
K+ with K0, the expansion of the quantities M̂2

π+ and 1
2(M̂

2
K+ + M̂2

K0) in powers of mu−md

only contains even powers. As shown in Ref. [52], the effects generated by mu−md in the mass

of the charged pion are strongly suppressed: the difference M̂2
π+ −M

2
π represents a quantity

of O[(mu −md)
2(mu + md)] and is therefore small compared to the difference M̂2

π+ − M̂2
π0 ,

for which an estimate was given above. In the case of 1
2(M̂

2
K+ + M̂2

K0)−M
2
K , the expansion

does contain a contribution at NLO, determined by the combination 2L8 − L5 of low-energy
constants, but the lattice results for that combination show that this contribution is very
small, too. Numerically, the effects generated by mu−md in M̂2

π+ and in 1
2(M̂

2
K+ + M̂2

K0) are
negligible compared to the uncertainties in the electromagnetic self-energies. The estimates
for these given in Eq. (15) thus imply

Mπ = M̂π+ = 134.8(3)MeV , MK =

√

1

2
(M̂2

K+ + M̂2
K0) = 494.2(3)MeV . (16)

This shows that, for the convention used above to specify the QCD sector of the Standard
Model, and within the accuracy to which this convention can currently be implemented,
the mass of the pion in the isospin limit agrees with the physical mass of the neutral pion:
Mπ −Mπ0 = −0.2(3) MeV.

3.1.3 Lattice determination of ms and mud

We now turn to a review of the lattice calculations of the light-quark masses and begin with
ms, the isospin-averaged up- and down-quark mass, mud, and their ratio. Most groups quote
only mud, not the individual up- and down-quark masses. We then discuss the ratio mu/md

and the individual determination of mu and md.
Quark masses have been calculated on the lattice since the mid-nineties. However early

calculations were performed in the quenched approximation, leading to unquantifiable sys-
tematics. Thus in the following, we only review modern, unquenched calculations, which
include the effects of light sea quarks.

Tabs. 3, 4 and 5 list the results of Nf = 2, Nf = 2 + 1 and Nf = 2 + 1 + 1 lattice
calculations of ms and mud. These results are given in the MS scheme at 2GeV, which
is standard nowadays, though some groups are starting to quote results at higher scales
(e.g. Ref. [8]). The tables also show the colour coding of the calculations leading to these
results. As indicated earlier in this review, we treat calculations with different numbers, Nf ,
of dynamical quarks separately.

Nf = 2 lattice calculations

For Nf = 2, no new calculations have been performed since the previous edition of the
FLAG review [2]. A quick inspection of Tab. 3 indicates that only the more recent calculations,
ALPHA 12 [53] and ETM 10B [54], control all systematic effects – the special case of Dürr
11 [55] is discussed below. Only ALPHA 12 [53], ETM 10B [54] and ETM 07 [56] really
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enter the chiral regime, with pion masses down to about 270 MeV for ALPHA and ETM.
Because this pion mass is still quite far from the physical pion mass, ALPHA 12 refrain from
determining mud and give only ms. All the other calculations have significantly more massive
pions, the lightest being about 430 MeV, in the calculation by CP-PACS 01 [57]. Moreover,
the latter calculation is performed on very coarse lattices, with lattice spacings a ≥ 0.11 fm
and only 1-loop perturbation theory is used to renormalize the results.

ETM 10B’s [54] calculation of mud and ms is an update of the earlier twisted mass
determination of ETM 07 [56]. In particular, they have added ensembles with a larger volume
and three new lattice spacings, a = 0.054, 0.067 and 0.098 fm, allowing for a continuum
extrapolation. In addition, it features analyses performed in SU(2) and SU(3) χPT.

The ALPHA 12 [53] calculation of ms is an update of ALPHA 05 [58], which pushes com-
putations to finer lattices and much lighter pion masses. It also importantly includes a deter-
mination of the lattice spacing with the decay constant FK , whereas ALPHA 05 converted
results to physical units using the scale parameter r0 [59], defined via the force between static
quarks. In particular, the conversion relied on measurements of r0/a by QCDSF/UKQCD
04 [60] which differ significantly from the new determination by ALPHA 12. As in ALPHA
05, in ALPHA 12 both nonperturbative running and nonperturbative renormalization are
performed in a controlled fashion, using Schrödinger functional methods.

The conclusion of our analysis of Nf = 2 calculations is that the results of ALPHA 12 [53]
and ETM 10B [54] (which update and extend ALPHA 05 [58] and ETM 07 [56], respectively),
are the only ones to date which satisfy our selection criteria. Thus we average those two results
for ms, obtaining 101(3) MeV. Regarding mud, for which only ETM 10B [54] gives a value, we
do not offer an average but simply quote ETM’s number. Thus, we quote as our estimates:

ms = 101(3) MeV Refs. [53, 54],
Nf = 2 : (17)

mud = 3.6(2) MeV Ref. [54].

The errors on these results are 3% and 6%, respectively. However, these errors do not account
for the fact that sea strange-quark mass effects are absent from the calculation, a truncation
of the theory whose systematic effects cannot be estimated a priori. Thus, these results carry
an additional unknown systematic arror. It is worth remarking that the difference between
ALPHA 12’s [53] central value for ms and that of ETM 10B [54] is 7(7) MeV.

We have not included the results of Dürr 11 [55] in the averages of Eq. (17), despite the fact
that they satisfy our selection criteria. The reason for this is that the observable which they
actually compute on the lattice is mc/ms = 11.27(30)(26), reviewed in Sec. 3.2.4. They obtain
ms by combining that value of mc/ms with already existing phenomenological calculations
of mc. Subsequently they obtain mud by combining this result for ms with the Nf = 2 + 1
calculation of ms/mud of BMW 10A, 10B [6, 7] discussed below. Thus, their results for ms

and mud are not per se lattice results, nor do they correspond to Nf = 2. The value of the
charm-quark mass which they use is an average of phenomenological determinations, which
they estimate to be mc(2GeV) = 1.093(13)GeV, with a 1.2% total uncertainty. This value
for mc leads to the results for ms and mud in Tab. 3 which are compatible with the averages
given in Eq. (17) and have similar uncertainties. Note, however, that their determination of
mc/ms is about 1.5 combined standard deviations below the only other Nf = 2 result which
satisfies our selection criteria, ETM 10B’s [54] result, as discussed in Sec. 3.2.4.
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mud ms

ALPHA 12 [53] A ◦ ⋆ ⋆ ⋆ a, b 102(3)(1)

Dürr 11‡ [55] A ◦ ⋆ ◦ − − 3.52(10)(9) 97.0(2.6)(2.5)
ETM 10B [54] A ◦ ⋆ ◦ ⋆ c 3.6(1)(2) 95(2)(6)
JLQCD/TWQCD 08A [61] A ◦ ¥ ¥ ⋆ − 4.452(81)(38)

(

+0

−227

)

–

RBC 07† [22] A ¥ ¥ ⋆ ⋆ − 4.25(23)(26) 119.5(5.6)(7.4)
ETM 07 [56] A ◦ ¥ ◦ ⋆ − 3.85(12)(40) 105(3)(9)
QCDSF/
UKQCD 06

[62] A ¥ ⋆ ¥ ⋆ − 4.08(23)(19)(23) 111(6)(4)(6)

SPQcdR 05 [63] A ¥ ◦ ◦ ⋆ − 4.3(4)(+1.1
−0.0) 101(8)(+25

−0 )

ALPHA 05 [58] A ¥ ◦ ⋆ ⋆ a 97(4)(18)§

QCDSF/
UKQCD 04

[60] A ¥ ⋆ ¥ ⋆ − 4.7(2)(3) 119(5)(8)

JLQCD 02 [64] A ¥ ¥ ◦ ¥ − 3.223(+46
−69) 84.5(+12.0

−1.7 )
CP-PACS 01 [57] A ¥ ¥ ⋆ ¥ − 3.45(10)(+11

−18) 89(2)(+2
−6)

⋆

‡ What is calculated is mc/ms = 11.27(30)(26). ms is then obtained using lattice and phenomenological
determinations of mc which rely on perturbation theory. Finally, mud is determined from ms using
BMW 10A, 10B’s Nf = 2+1 result for ms/mud [6, 7]. Since mc/ms is renormalization group invariant
in QCD, the renormalization and running of the quark masses enter indirectly through that of mc, a
mass that we do not review here.

† The calculation includes quenched e.m. effects.
§ The data used to obtain the bare value of ms are from UKQCD/QCDSF 04 [60].
⋆ This value of ms was obtained using the kaon mass as input. If the φ-meson mass is used instead, the

authors find ms = 90(+5
−11).

a The masses are renormalized and run nonperturbatively up to a scale of 100GeV in the Nf = 2 SF
scheme. In this scheme, nonperturbative and NLO running for the quark masses are shown to agree
well from 100 GeV all the way down to 2 GeV [58].

b The running and renormalization results of Ref. [58] are improved in Ref. [53] with higher statistical
and systematic accuracy.

c The masses are renormalized nonperturbatively at scales 1/a ∼ 2 ÷ 3GeV in the Nf = 2 RI/MOM
scheme. In this scheme, nonperturbative and N3LO running for the quark masses are shown to agree
from 4 GeV down to 2 GeV to better than 3% [65].

Table 3: Nf = 2 lattice results for the masses mud and ms (MeV, running masses in the MS
scheme at scale 2 GeV). The significance of the colours is explained in Sec. 2. If information
about nonperturbative running is available, this is indicated in the column “running”, with
details given at the bottom of the table.
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Nf = 2 + 1 lattice calculations

We turn now to Nf = 2 + 1 calculations. These and the corresponding results for mud

and ms are summarized in Tab. 4. Given the very high precision of a number of the results,
with total errors on the order of 1%, it is important to consider the effects neglected in these
calculations. Since isospin breaking and e.m. effects are small on mud and ms, and have been
approximately accounted for in the calculations that will be retained for our averages, the
largest potential source of uncontrolled systematic error is that due to the omission of the
charm quark in the sea. Beyond the small perturbative corrections that come from matching
the Nf = 3 to the Nf = 4 MS scheme at mc (∼ −0.2%), the charm sea-quarks affect the
determination of the light-quark masses through contributions of order 1/m2

c . As these are
further suppressed by the Okubo-Zweig-Iizuka rule, they are also expected to be small, but are
difficult to quantify a priori. Fortunately, as we will see below, ms has been directly computed
withNf = 2+1+1 simulations. In particular, HPQCD 14 [11] has computedms in QCD4 with
very much the same approach as it had used to obtain the QCD3 result of HPQCD 10 [66].
Their results for ms(Nf = 3, 2 GeV) are 93.8(8)MeV [11] and 92.2(1.3)MeV [66], where the
Nf = 4 result has been converted perturbatively toNf = 3 in Ref. [11]. This leads to a relative
difference of 1.7(1.6)%. While the two results are compatible within one combined standard
deviation, a ∼ 2% effect cannot be excluded. Thus, we will retain this 2% uncertainty and
add it to the averages for ms and mud given below.

The only new calculation since the last FLAG report [2] is that of RBC/UKQCD 14 [12].
It significantly improves on their RBC/UKQCD 12 [8] work by adding three new domain
wall fermion simulations to three used previously. Two of the new simulations are performed
at essentially physical pion masses (Mπ ≃ 139MeV) on lattices of about 5.4 fm in size and
with lattice spacings of 0.114 fm and 0.084 fm. It is complemented by a third simulation
with Mπ ≃ 371MeV, a ≃ 0.063 and a rather small L ≃ 2.0 fm. Altogether, this gives
them six simulations with six unitary Mπ’s in the range of 139 to 371MeV and effectively
three lattice spacings from 0.063 to 0.114 fm. They perform a combined global continuum
and chiral fit to all of their results for the π and K masses and decay constants, the Ω
baryon mass and two Wilson-flow parameters. Quark masses in these fits are renormalized
and run nonperturbatively in the RI/SMOM scheme. This is done by computing the relevant
renormalization constant for a reference ensemble and determining those for other simulations
relative to it by adding appropriate parameters in the global fit. This new calculation passes
all of our selection criteria. Its results will replace the older RBC/UKQCD 12 results in our
averages.

Nf = 2+1 MILC results for light-quark masses go back to 2004 [24, 75]. They use rooted
staggered fermions. By 2009 their simulations covered an impressive range of parameter
space, with lattice spacings which go down to 0.045 fm and valence-pion masses down to
approximately 180 MeV [26]. The most recent MILC Nf = 2 + 1 results, i.e. MILC 10A [69]
and MILC 09A [26], feature large statistics and 2-loop renormalization. Since these data sets
subsume those of their previous calculations, these latest results are the only ones that must
be kept in any world average.

The PACS-CS 12 [67] calculation represents an important extension of the collaboration’s
earlier 2010 computation [5], which already probed pion masses down to Mπ ≃ 135MeV, i.e.
down to the physical-mass point. This was achieved by reweighting the simulations performed
in PACS-CS 08 [3] at Mπ ≃ 160MeV. If adequately controlled, this procedure eliminates the
need to extrapolate to the physical-mass point and, hence, the corresponding systematic error.
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mud ms

RBC/UKQCD 14B⊖ [12] P ⋆ ⋆ ⋆ ⋆ d 3.31(4)(4) 90.3(0.9)(1.0)
RBC/UKQCD 12⊖ [8] A ⋆ ◦ ⋆ ⋆ d 3.37(9)(7)(1)(2) 92.3(1.9)(0.9)(0.4)(0.8)
PACS-CS 12⋆ [67] A ⋆ ¥ ¥ ⋆ b 3.12(24)(8) 83.60(0.58)(2.23)
Laiho 11 [68] C ◦ ⋆ ⋆ ◦ − 3.31(7)(20)(17) 94.2(1.4)(3.2)(4.7)
BMW 10A, 10B+ [6, 7] A ⋆ ⋆ ⋆ ⋆ c 3.469(47)(48) 95.5(1.1)(1.5)
PACS-CS 10 [5] A ⋆ ¥ ¥ ⋆ b 2.78(27) 86.7(2.3)
MILC 10A [69] C ◦ ⋆ ⋆ ◦ − 3.19(4)(5)(16) –
HPQCD 10∗ [66] A ◦ ⋆ ⋆ − − 3.39(6) 92.2(1.3)
RBC/UKQCD 10A [70] A ◦ ◦ ⋆ ⋆ a 3.59(13)(14)(8) 96.2(1.6)(0.2)(2.1)

Blum 10† [20] A ◦ ¥ ◦ ⋆ − 3.44(12)(22) 97.6(2.9)(5.5)
PACS-CS 09 [4] A ⋆ ¥ ¥ ⋆ b 2.97(28)(3) 92.75(58)(95)
HPQCD 09A⊕ [71] A ◦ ⋆ ⋆ − − 3.40(7) 92.4(1.5)
MILC 09A [26] C ◦ ⋆ ⋆ ◦ − 3.25 (1)(7)(16)(0) 89.0(0.2)(1.6)(4.5)(0.1)
MILC 09 [25] A ◦ ⋆ ⋆ ◦ − 3.2(0)(1)(2)(0) 88(0)(3)(4)(0)
PACS-CS 08 [3] A ⋆ ¥ ¥ ¥ − 2.527(47) 72.72(78)
RBC/UKQCD 08 [72] A ◦ ¥ ⋆ ⋆ − 3.72(16)(33)(18) 107.3(4.4)(9.7)(4.9)
CP-PACS/
JLQCD 07

[73] A ¥ ⋆ ⋆ ¥ − 3.55(19)(+56
−20) 90.1(4.3)(+16.7

−4.3 )

HPQCD 05 [74] A ◦ ◦ ◦ ◦ − 3.2(0)(2)(2)(0)‡ 87(0)(4)(4)(0)‡

MILC 04, HPQCD/
MILC/UKQCD 04

[24, 75] A ◦ ◦ ◦ ¥ − 2.8(0)(1)(3)(0) 76(0)(3)(7)(0)

⊖ The results are given in the MS scheme at 3 instead of 2 GeV. We run them down to 2 GeV using
numerically integrated 4-loop running [76, 77] with Nf = 3 and with the values of αs(MZ), mb and mc

taken from Ref. [78]. The running factor is 1.106. At three loops it is only 0.2% smaller, indicating
that running uncertainties are small. We neglect them here.

⋆ The calculation includes e.m. and mu 6= md effects through reweighting.
+ The fermion action used is tree-level improved.
∗ What is calculated is then obtained by combining this result with HPQCD 09A’s

mc/ms = 11.85(16) [71]. Finally, mud is determined from ms with the MILC 09 result for
ms/mud. Since mc/ms is renormalization group invariant in QCD, the renormalization and running of
the quark masses enter indirectly through that of mc (see below).

† The calculation includes quenched e.m. effects.
⊕ What is calculated is mc/ms = 11.85(16). ms is then obtained by combing this result with the

determination mc(mc) = 1.268(9) GeV from Ref. [79]. Finally, mud is determined from ms with the
MILC 09 result for ms/mud.

‡ The bare numbers are those of MILC 04. The masses are simply rescaled, using the ratio of the 2-loop
to 1-loop renormalization factors.

a The masses are renormalized nonperturbatively at a scale of 2 GeV in a couple of Nf = 3 RI/SMOM
schemes. A careful study of perturbative matching uncertainties has been performed by comparing
results in the two schemes in the region of 2 GeV to 3 GeV [70].

b The masses are renormalized and run nonperturbatively up to a scale of 40GeV in the Nf = 3 SF
scheme. In this scheme, nonperturbative and NLO running for the quark masses are shown to agree
well from 40 GeV all the way down to 3 GeV [5].

c The masses are renormalized and run nonperturbatively up to a scale of 4 GeV in the Nf = 3 RI/MOM
scheme. In this scheme, nonperturbative and N3LO running for the quark masses are shown to agree
from 6 GeV down to 3 GeV to better than 1% [7].

d All required running is performed nonperturbatively.

Table 4: Nf = 2 + 1 lattice results for the masses mud and ms (see Tab. 3 for notation).
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The new calculation now applies similar reweighting techniques to include electromagnetic
and mu 6= md isospin-breaking effects directly at the physical pion mass. Further, as in
PACS-CS 10 [5], renormalization of quark masses is implemented nonperturbatively, through
the Schrödinger functional method [80]. As it stands, the main drawback of the calculation,
which makes the inclusion of its results in a world average of lattice results inappropriate
at this stage, is that for the lightest quark mass the volume is very small, corresponding
to LMπ ≃ 2.0, a value for which finite-volume effects will be difficult to control. Another
problem is that the calculation was performed at a single lattice spacing, forbidding a contin-
uum extrapolation. Further, it is unclear at this point what might be the systematic errors
associated with the reweighting procedure.

The BMW 10A, 10B [6, 7] calculation still satisfies our stricter selection criteria. They
reach the physical up- and down-quark mass by interpolation instead of by extrapolation.
Moreover, their calculation was performed at five lattice spacings ranging from 0.054 to
0.116 fm, with full nonperturbative renormalization and running and in volumes of up to
(6 fm)3 guaranteeing that the continuum limit, renormalization and infinite-volume extrap-
olation are controlled. It does neglect, however, isospin-breaking effects, which are small on
the scale of their error bars.

Finally we come to another calculation which satisfies our selection criteria, HPQCD 10 [66].
It updates the staggered fermions calculation of HPQCD 09A [71]. In these papers the renor-
malized mass of the strange quark is obtained by combining the result of a precise calculation
of the renormalized charm-quark mass, mc, with the result of a calculation of the quark-mass
ratio, mc/ms. As described in Ref. [79] and in Sec. 3.2, HPQCD determines mc by fitting
Euclidean-time moments of the c̄c pseudoscalar density two-point functions, obtained numer-
ically in lattice QCD, to fourth-order, continuum perturbative expressions. These moments
are normalized and chosen so as to require no renormalization with staggered fermions. Since
mc/ms requires no renormalization either, HPQCD’s approach displaces the problem of lattice
renormalization in the computation of ms to one of computing continuum perturbative ex-
pressions for the moments. To calculate mud HPQCD 10 [66] use the MILC 09 determination
of the quark-mass ratio ms/mud [25].

HPQCD 09A [71] obtains mc/ms = 11.85(16) [71] fully nonperturbatively, with a preci-
sion slightly larger than 1%. HPQCD 10’s determination of the charm-quark mass, mc(mc) =
1.268(6), 3 is even more precise, achieving an accuracy better than 0.5%. While these errors
are, perhaps, surprisingly small, we take them at face value as we do those of RBC/UKQCD 14,
since we will add a 2% error due to the quenching of the charm on the final result.

This discussion leaves us with four results for our final average for ms: MILC 09A [26],
BMW 10A, 10B [6, 7], HPQCD 10 [66] and RBC/UKQCD 14 [12]. Assuming that the result
from HPQCD 10 is 100% correlated with that of MILC 09A, as it is based on a subset of the
MILC 09A configurations, we find ms = 92.0(1.1)MeV with a χ2/dof = 1.8.

For the light quark mass mud, the results satisfying our criteria are RBC/UKQCD 14B,
BMW 10A, 10B, HPQCD 10, and MILC 10A. For the error, we include the same 100%
correlation between statistical errors for the latter two as for the strange case, resulting in
mud = 3.373(43) at 2 GeV in the MS scheme (χ2/d.of.=1.5). Adding the 2% estimate for the

3To obtain this number, we have used the conversion from µ = 3 GeV to mc given in Ref. [79].
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missing charm contribution, our final estimates for the light-quark masses are

mud = 3.373(80) MeV Refs. [6, 7, 12, 66, 69],
Nf = 2 + 1 : (18)

ms = 92.0(2.1) MeV Refs. [6, 7, 12, 26, 66].

Nf = 2 + 1 + 1 lattice calculations

One of the novelties since the last edition of this review [2] is the fact that Nf = 2 +
1 + 1 results for the light-quark masses have been published. These and the features of the
corresponding calculations are summarized in Tab. 5. Note that the results of Ref. [11] are
reported as ms(2GeV;Nf = 3) and those of Ref. [9] as mud(s)(2GeV;Nf = 4). We convert
the former to Nf = 4 and obtain ms(2GeV;Nf = 4) = 93.7(8)MeV. The average of ETM
14 and HPQCD 14A is 93.9(1.1)MeV with χ2/d.o.f.=1.8. For the light0quark average we use
the sole available value from ETM 14A. Our averages are

mud = 3.70(17) MeV Ref. [9],
Nf = 2 + 1 + 1 : (19)

ms = 93.9(1.1) MeV Refs. [9, 11].
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mud ms

HPQCD 14A ⊕ [11] A ⋆ ⋆ ⋆ − − 93.7(8)
ETM 14⊕ [9] A ◦ ⋆ ⋆ ⋆ − 3.70(13)(11) 99.6(3.6)(2.3)

⊕ As explained in the text, ms is obtained by combining the results mc(5GeV;Nf = 4) = 0.8905(56) GeV
and (mc/ms)(Nf = 4) = 11.652(65), determined on the same data set. A subsequent scale and scheme
conversion, performed by the authors leads, to the value 93.6(8). In the table we have converted this
to ms(2GeV;Nf = 4), which makes a very small change.

Table 5: Nf = 2 + 1 + 1 lattice results for the masses mud and ms (see Tab. 3 for notation).

In Figs. 1 and 2 the lattice results listed in Tabs. 3, 4 and 5 and the FLAG averages
obtained at each value of Nf are presented and compared with various phenomenological
results.

3.1.4 Lattice determinations of ms/mud

The lattice results for ms/mud are summarized in Tab. 6. In the ratio ms/mud, one of the
sources of systematic error – the uncertainties in the renormalization factors – drops out.
Also, we can compare the lattice results with the leading-order formula of χPT,

ms

mud

LO

=
M̂2

K+ + M̂2
K0 − M̂2

π+

M̂2
π+

, (20)
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Figure 1: MS mass of the strange quark (at 2 GeV scale) in MeV. The upper three panels
show the lattice results listed in Tabs. 3, 4 and 5, while the bottom panel collects a few sum
rule results and also indicates the current PDG estimate. Diamonds and squares represent
results based on perturbative and nonperturbative renormalization, respectively. The black
squares and the grey bands represent our estimates (17) , (18) and (19). The significance of
the colours is explained in Sec. 2.

which relates the quantity ms/mud to a ratio of meson masses in QCD. Expressing these in
terms of the physical masses and the four coefficients introduced in Eqs. (10)-(12), linearizing
the result with respect to the corrections and inserting the observed mass values, we obtain

ms

mud

LO

= 25.9− 0.1 ǫ+ 1.9 ǫπ0 − 0.1 ǫK0 − 1.8 ǫm . (21)

If the coefficients ǫ, ǫπ0 , ǫK0 and ǫm are set equal to zero, the right hand side reduces to
the value ms/mud = 25.9 that follows from Weinberg’s leading-order formulae for mu/md

and ms/md [88], in accordance with the fact that these do account for the e.m. interaction at
leading chiral order, and neglect the mass difference between the charged and neutral pions in
QCD. Inserting the estimates (13) gives the effect of chiral corrections to the e.m. self-energies
and of the mass difference between the charged and neutral pions in QCD. With these, the
LO prediction in QCD becomes

ms

mud

LO

= 25.9(1) , (22)

leaving the central value unchanged at 25.9. The corrections parameterized by the coefficients
of Eq. (13) are small for this quantity. Note that the quoted uncertainty does not include an
estimate of higher-order chiral contributions to this LO QCD formula, but only accounts for
the error bars in the coefficients. However, even this small uncertainty is no longer irrelevant
given the the high precision reached in lattice determinations of the ratio ms/mud.
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Figure 2: Mean mass of the two lightest quarks, mud = 1
2(mu +md) (for details see Fig. 1).

The lattice results in Tab. 6, which satisfy our selection criteria, indicate that the cor-
rections generated by the nonleading terms of the chiral perturbation series are remarkably
small, in the range 3–10%. Despite the fact that the SU(3)-flavour-symmetry breaking effects
in the Nambu-Goldstone boson masses are very large (M2

K ≃ 13M2
π), the mass spectrum of

the pseudoscalar octet obeys the SU(3)× SU(3) formula (20) very well.

Nf = 2 lattice calculations

With respect to the FLAG 13 review [2] there is only one new result, ETM 14D [87], based
on recent ETM gauge ensembles generated close to the physical point with the addition of
a clover term to the tmQCD action. The new simulations are performed at a single lattice
spacing of ≃ 0.09 fm and at a single box size L ≃ 4 fm and therefore their calculations do
not pass our criteria for the continuum extrapolation and finite-volume effects.

Therefore the FLAG average at Nf = 2 is still obtained by considering only the ETM 10B
result (described already in the previous Section), namely

Nf = 2 : ms/mud = 27.3 (9) Ref. [54], (23)

with an overall uncertainty equal to 3.3%.
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ms/mud

FNAL/MILC 14A [10] 2+1+1 A ⋆ ⋆ ⋆ 27.35(5)+10
−7

ETM 14 [9] 2+1+1 A ◦ ⋆ ◦ 26.66(32)(2)

RBC/UKQCD 14B [12] 2+1 P ⋆ ⋆ ⋆ 27.34(21)
RBC/UKQCD 12⊖ [8] 2+1 A ⋆ ◦ ⋆ 27.36(39)(31)(22)
PACS-CS 12⋆ [67] 2+1 A ⋆ ¥ ¥ 26.8(2.0)
Laiho 11 [68] 2+1 C ◦ ⋆ ⋆ 28.4(0.5)(1.3)
BMW 10A, 10B+ [6, 7] 2+1 A ⋆ ⋆ ⋆ 27.53(20)(8)
RBC/UKQCD 10A [70] 2+1 A ◦ ◦ ⋆ 26.8(0.8)(1.1)

Blum 10† [20] 2+1 A ◦ ¥ ◦ 28.31(0.29)(1.77)
PACS-CS 09 [4] 2+1 A ⋆ ¥ ¥ 31.2(2.7)
MILC 09A [26] 2+1 C ◦ ⋆ ⋆ 27.41(5)(22)(0)(4)
MILC 09 [25] 2+1 A ◦ ⋆ ⋆ 27.2(1)(3)(0)(0)
PACS-CS 08 [3] 2+1 A ⋆ ¥ ¥ 28.8(4)
RBC/UKQCD 08 [72] 2+1 A ◦ ¥ ⋆ 28.8(0.4)(1.6)
MILC 04, HPQCD/
MILC/UKQCD 04

[24, 75] 2+1 A ◦ ◦ ◦ 27.4(1)(4)(0)(1)

ETM 14D [87] 2 C ⋆ ¥ ¥ 27.63(13)
ETM 10B [54] 2 A ◦ ⋆ ◦ 27.3(5)(7)

RBC 07† [22] 2 A ¥ ¥ ⋆ 28.10(38)
ETM 07 [56] 2 A ◦ ¥ ◦ 27.3(0.3)(1.2)
QCDSF/UKQCD 06 [62] 2 A ¥ ⋆ ¥ 27.2(3.2)

⊖ The errors are statistical, chiral and finite volume.
⋆ The calculation includes e.m. and mu 6= md effects through reweighting.
+ The fermion action used is tree-level improved.
† The calculation includes quenched e.m. effects.

Table 6: Lattice results for the ratio ms/mud.

Nf = 2 + 1 lattice calculations

For Nf = 2 + 1 our average of ms/mud is based on the new result RBC/UKQCD 14B,
which replaces RBC/UKQCD 12 (see Sec. 3.1.3), and on the results MILC 09A and BMW
10A, 10B. The value quoted by HPQCD 10 does not represent independent information as it
relies on the result for ms/mud obtained by the MILC collaboration. Averaging these results
according to the prescriptions of Sec. 2.3 gives ms/mud = 27.43(13) with χ2/dof ≃ 0.2. Since
the errors associated with renormalization drop out in the ratio, the uncertainties are even
smaller than in the case of the quark masses themselves: the above number for ms/mud

amounts to an accuracy of 0.5%.
At this level of precision, the uncertainties in the electromagnetic and strong isospin-

breaking corrections are not completely negligible. The error estimate in the LO result (22)
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indicates the expected order of magnitude. In view of this, we ascribe conservatively a 1.0%
uncertainty to this source of error. Thus, our final conservative estimate is

Nf = 2 + 1 : ms/mud = 27.43 (13) (27) = 27.43 (31) Ref. [6, 7, 12, 26], (24)

with a total 1.1% uncertainty. It is also fully consistent with the ratio computed from our
individual quark masses in Eq. (18), ms/mud = 27.6(6), which has a larger 2.2% uncertainty.
In Eq. (24) the first error comes from the averaging of the lattice results, and the second is
the one that we add to account for the neglect of isospin-breaking effects.

Nf = 2 + 1 + 1 lattice calculations

For Nf = 2+ 1+ 1 there are two results, ETM 14 [9] and FNAL/MILC 14A [10], both of
which satisfy our selection criteria.

ETM 14 uses 15 twisted mass gauge ensembles at 3 lattice spacings ranging from 0.062
to 0.089 fm (using fπ as input), in boxes of size ranging from 2.0 to 3.0 fm and pion masses
from 210 to 440 MeV (explaining the tag ◦ in the chiral extrapolation and the tag ⋆ for the
continuum extrapolation). The value of MπL at their smallest pion mass is 3.2 with more
than two volumes (explaining the tag ◦ in the finite-volume effects). They fix the strange
mass with the kaon mass.

FNAL/MILC 14A employs HISQ staggered fermions. Their result is based on 21 ensem-
bles at 4 values of the coupling β corresponding to lattice spacings in the range from 0.057
to 0.153 fm, in boxes of sizes up to 5.8 fm and with taste-Goldstone pion masses down to 130
MeV and RMS pion masses down to 143 MeV. They fix the strange mass with Ms̄s, corrected
for e.m. effects with ǭ = 0.84(20) [32]. All of our selection criteria are satisfied with the tag
⋆ . Thus our average is given by ms/mud = 27.30 (20), where the error includes a large
stretching factor equal to

√

χ2/dof ≃ 2.1, coming from our rules for the averages discussed
in Sec. 2.2. Nevertheless the above number amounts still to an accuracy of 0.7%. As in the
case of our average for Nf = 2 + 1, we add a 1.0% uncertainty related to the neglect of
isospin-breaking effects, leading to

Nf = 2 + 1 + 1 : ms/mud = 27.30 (20) (27) = 27.30 (34) Refs. [9, 10], (25)

which corresponds to an overall uncertainty equal to 1.3%.
All the lattice results listed in Tab. 6 as well as the FLAG averages for each value of Nf

are reported in Fig. 3 and compared with χPT, sum rules and the updated PDG estimate
ms/mud = 27.5(3) [78].

Note that our averages (23), (24) and (25), obtained for Nf = 2, 2 + 1 and 2 + 1 + 1,
respectively, agree very well within the quoted errors. They also show that the LO prediction
of χPT in Eq. (22) receives only small corrections from higher orders of the chiral expansion:
according to Eqs. (24) and (25), these generate shifts of 5.9(1.1)% and 5.4(1.2)% relative to
Eq. (22), respectively.

The ratio ms/mud can also be extracted from the masses of the neutral Nambu-Goldstone
bosons: neglecting effects of order (mu − md)

2 also here, the leading-order formula reads

ms/mud
LO

= 3
2M̂

2
η /M̂

2
π − 1

2 . Numerically, this gives ms/mud
LO

= 24.2. The relation has the
advantage that the e.m. corrections are expected to be much smaller here, but it is more
difficult to calculate the η-mass on the lattice. The comparison with Eqs. (24) and (25) shows
that, in this case, the NLO contributions are somewhat larger: 11.9(9)% and 11.4(1.1)%.
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Figure 3: Results for the ratio ms/mud. The upper part indicates the lattice results listed in
Tab. 6 together with the FLAG averages for each value of Nf . The lower part shows results
obtained from χPT and sum rules, together with the current PDG estimate.

3.1.5 Lattice determination of mu and md

Since FLAG 13, two new results have been reported for nondegenerate light-quark masses,
ETM 14 [9], and QCDSF/UKQCD 15 [92], for Nf = 2 + 1 + 1, and 3 flavours respectively.
The former uses simulations in pure QCD, but determines mu − md from the slope of the
square of the kaon mass and the neutral-charged mass-squares difference, evaluated at the
isospin-symmetric point. The latter uses QCD+QED dynamical simulations performed at
the SU(3)-flavour-symmetric point, but at a single lattice spacing, so they do not enter our
average. While QCDSF/UKQCD 15 use three volumes, the smallest has linear size roughly
1.7 fm, and the smallest partially quenched pion mass is greater than 200 MeV, so our
finite-volume and chiral-extrapolation criteria require ◦ ratings. In Ref. [92] results for ǫ and
mu/md are computed in the so-called Dashen scheme. A subsequent paper [38] gives formulae
to convert the ǫ parameters to the MS scheme.

As the above implies, the determination of mu and md separately requires additional
input. MILC 09A [26] uses the mass difference between K0 and K+, from which they subtract
electromagnetic effects using Dashen’s theorem with corrections, as discussed in Sec. 3.1.1.
The up and down sea quarks remain degenerate in their calculation, fixed to the value of mud

obtained from Mπ0 .
To determine mu/md, BMW 10A, 10B [6, 7] follow a slightly different strategy. They ob-

tain this ratio from their result for ms/mud combined with a phenomenological determination
of the isospin-breaking quark-mass ratio Q = 22.3(8), defined below in Eq. (32), from η → 3π
decays [18] (the decay η → 3π is very sensitive to QCD isospin breaking but fairly insensitive
to QED isospin breaking). As discussed in Sec. 3.1.6, the central value of the e.m. parameter
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ǫ in Eq. (13) is taken from the same source.
RM123 11 [93] actually uses the e.m. parameter ǫ = 0.7(5) from the first edition of the

FLAG review [44]. However they estimate the effects of strong isospin breaking at first non-
trivial order, by inserting the operator 1

2(mu − md)
∫

(ūu − d̄d) into correlation functions,
while performing the gauge averages in the isospin limit. Applying these techniques, they
obtain (M̂2

K0 −M̂2
K+)/(md−mu) = 2.57(8)MeV. Combining this result with the phenomeno-

logical (M̂2
K0 − M̂2

K+) = 6.05(63) × 103 determined with the above value of ǫ, they get
(md −mu) = 2.35(8)(24)MeV, where the first error corresponds to the lattice statistical and
systematic uncertainties combined in quadrature, while the second arises from the uncertainty
on ǫ. Note that below we quote results from RM123 11 for mu, md and mu/md. As described
in Tab. 7, we obtain them by combining RM123 11’s result for (md −mu) with ETM 10B’s
result for mud.

Instead of subtracting electromagnetic effects using phenomenology, RBC 07 [22] and
Blum 10 [20] actually include a quenched electromagnetic field in their calculation. This
means that their results include corrections to Dashen’s theorem, albeit only in the presence
of quenched electromagnetism. Since the up and down quarks in the sea are treated as
degenerate, very small isospin corrections are neglected, as in MILC’s calculation.

PACS-CS 12 [67] takes the inclusion of isospin-breaking effects one step further. Using
reweighting techniques, it also includes electromagnetic and mu −md effects in the sea.

Lattice results for mu, md and mu/md are summarized in Tab. 7. In order to discuss
them, we consider the LO formula

mu

md

LO

=
M̂2

K+ − M̂2
K0 + M̂2

π+

M̂2
K0 − M̂2

K+ + M̂2
π+

. (26)

Using Eqs. (10)–(12) to express the meson masses in QCD in terms of the physical ones and
linearizing in the corrections, this relation takes the form

mu

md

LO

= 0.558− 0.084 ǫ− 0.02 ǫπ0 + 0.11 ǫm . (27)

Inserting the estimates (13) and adding errors in quadrature, the LO prediction becomes

mu

md

LO

= 0.50(3) . (28)

Again, the quoted error exclusively accounts for the errors attached to the estimates (13) for
the epsilons – contributions of nonleading order are ignored. The uncertainty in the leading-
order prediction is dominated by the one in the coefficient ǫ, which specifies the difference
between the meson squared-mass splittings generated by the e.m. interaction in the kaon and
pion multiplets. The reduction in the error on this coefficient since the previous review [44]
results in a reduction of a factor of a little less than 2 in the uncertainty on the LO value of
mu/md given in Eq. (28).

It is interesting to compare the assumptions made or results obtained by the different
collaborations for the violation of Dashen’s theorem. The input used in MILC 09A is ǫ =
1.2(5) [26], while the Nf = 2 computation of RM123 13 finds ǫ = 0.79(18)(18) [37]. As
discussed in Sec. 3.1.6, the value of Q used by BMW 10A, 10B [6, 7] gives ǫ = 0.70(28) at
NLO (see Eq. (40)). On the other hand, RBC 07 [22] and Blum 10 [20] obtain the results
ǫ = 0.13(4) and ǫ = 0.5(1). The new results from QCDSF/UKQCD 15 give ǫ = 0.50(6) [38].
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mu md mu/md

MILC 14 [32] C ⋆ ⋆ ⋆ − − 0.4482(48)(+ 21
−115)(1)(165)

ETM 14 [9] A ⋆ ⋆ ⋆ ⋆ b 2.36(24) 5.03(26) 0.470(56)

QCDSF/UKQCD 15⊖ [92] P ◦ ¥ ◦ − − 0.52(5)
PACS-CS 12⋆ [67] A ⋆ ¥ ¥ ⋆ a 2.57(26)(7) 3.68(29)(10) 0.698(51)
Laiho 11 [68] C ◦ ⋆ ⋆ ◦ − 1.90(8)(21)(10) 4.73(9)(27)(24) 0.401(13)(45)

HPQCD 10‡ [66] A ◦ ⋆ ⋆ ⋆ − 2.01(14) 4.77(15)
BMW 10A, 10B+ [6, 7] A ⋆ ⋆ ⋆ ⋆ b 2.15(03)(10) 4.79(07)(12) 0.448(06)(29)

Blum 10† [20] A ◦ ¥ ◦ ⋆ − 2.24(10)(34) 4.65(15)(32) 0.4818(96)(860)
MILC 09A [26] C ◦ ⋆ ⋆ ◦ − 1.96(0)(6)(10)(12) 4.53(1)(8)(23)(12) 0.432(1)(9)(0)(39)
MILC 09 [25] A ◦ ⋆ ⋆ ◦ − 1.9(0)(1)(1)(1) 4.6(0)(2)(2)(1) 0.42(0)(1)(0)(4)
MILC 04, HPQCD/
MILC/UKQCD 04

[24]
[75]

A ◦ ◦ ◦ ¥ − 1.7(0)(1)(2)(2) 3.9(0)(1)(4)(2) 0.43(0)(1)(0)(8)

RM123 13 [37] A ◦ ⋆ ◦ ⋆ c 2.40(15)(17) 4.80 (15)(17) 0.50(2)(3)
RM123 11⊕ [93] A ◦ ⋆ ◦ ⋆ c 2.43(11)(23) 4.78(11)(23) 0.51(2)(4)
Dürr 11∗ [55] A ◦ ⋆ ◦ − − 2.18(6)(11) 4.87(14)(16)

RBC 07† [22] A ¥ ¥ ⋆ ⋆ − 3.02(27)(19) 5.49(20)(34) 0.550(31)

⊖ Results are computed in QCD+QED and quoted in an unconventional “Dashen scheme”.
⋆ The calculation includes e.m. and mu 6= md effects through reweighting.
‡ Values obtained by combining the HPQCD 10 result for ms with the MILC 09 results for ms/mud and

mu/md.
+ The fermion action used is tree-level improved.
∗ Values obtained by combining the Dürr 11 result for ms with the BMW 10A, 10B results for ms/mud

and mu/md.
⊕ The results presented on this line are in italics because they do not appear in the quoted paper.

Rather, the values for mu, md and mu/md are obtained by combining the result of RM123 11 for
(md − mu) [93] with mud = 3.6(2)MeV from ETM 10B. (md − mu) = 2.35(8)(24)MeV in Ref. [93]
was obtained assuming ǫ = 0.7(5) [44] and ǫm = ǫπ0 = ǫK0 = 0. In the quoted results, the first error
corresponds to the lattice statistical and systematic errors combined in quadrature, while the second
arises from the uncertainties associated with ǫ.

† The calculation includes quenched e.m. effects.

a The masses are renormalized and run nonperturbatively up to a scale of 100GeV in the Nf = 2 SF
scheme. In this scheme, nonperturbative and NLO running for the quark masses are shown to agree
well from 100 GeV all the way down to 2 GeV [58].

b The masses are renormalized and run nonperturbatively up to a scale of 4 GeV in the Nf = 3 RI/MOM
scheme. In this scheme, nonperturbative and N3LO running for the quark masses are shown to agree
from 6 GeV down to 3 GeV to better than 1% [7].

c The masses are renormalized nonperturbatively at scales 1/a ∼ 2 ÷ 3GeV in the Nf = 2 RI/MOM
scheme. In this scheme, nonperturbative and N3LO running for the quark masses are shown to agree
from 4 GeV down 2 GeV to better than 3% [65].

Table 7: Lattice results for mu, md (MeV) and for the ratio mu/md. The values refer to
the MS scheme at scale 2 GeV. The top part of the table lists the result obtained with
Nf = 2 + 1 + 1, while the middle and lower part presents calculations with Nf = 2 + 1 and
Nf = 2, respectively.
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Note that PACS-CS 12 [67] do not provide results which allow us to determine ǫ directly.
However, using their result for mu/md, together with Eq. (27), and neglecting NLO terms,
one finds ǫ = −1.6(6), which is difficult to reconcile with what is known from phenomenology
(see Secs. 3.1.1 and 3.1.6). Since the values assumed or obtained for ǫ differ, it does not come
as a surprise that the determinations of mu/md are different.

These values of ǫ are also interesting because they allow us to estimate the chiral correc-
tions to the LO prediction (28) for mu/md. Indeed, evaluating the relation (27) for the values
of ǫ given above, and neglecting all other corrections in this equation, yields the LO values
(mu/md)

LO = 0.46(4), 0.547(3), 0.52(1), 0.50(2), 0.49(2) and 0.51(1) for MILC 09A, RBC
07, Blum 10, BMW 10A, 10B, RM123 13, and QCDSF/UKQCD 15, respectively. However,
in comparing these numbers to the nonperturbative results of Tab. 7 one must be careful
not to double count the uncertainty arising from ǫ. One way to obtain a sharp comparison
is to consider the ratio of the results of Tab. 7 to the LO values (mu/md)

LO, in which the
uncertainty from ǫ cancels to good accuracy. Here we will assume for simplicity that they
cancel completely and will drop all uncertainties related to ǫ. For Nf = 2 we consider RM123
13 [37], which updates RM123 11 and has no red dots. Since the uncertainties common to
ǫ and mu/md are not explicitly given in Ref. [37], we have to estimate them. For that we
use the leading-order result for mu/md, computed with RM123 13’s value for ǫ. Its error
bar is the contribution of the uncertainty on ǫ to (mu/md)

LO. To good approximation this
contribution will be the same for the value of mu/md computed in Ref. [37]. Thus, we sub-
tract it in quadrature from RM123 13’s result in Tab. 7 and compute (mu/md)/(mu/md)

LO,
dropping uncertainties related to ǫ. We find (mu/md)/(mu/md)

LO = 1.02(6). This result
suggests that chiral corrections in the case of Nf = 2 are negligible. For the two most accu-
rate Nf = 2 + 1 calculations, those of MILC 09A and BMW 10A, 10B, this ratio of ratios is
0.94(2) and 0.90(1), respectively. Though these two numbers are not fully consistent within
our rough estimate of the errors, they indicate that higher-order corrections to Eq. (28) are
negative and about 8% when Nf = 2 + 1. In the following, we will take them to be -8(4)%.
The fact that these corrections are seemingly larger and of opposite sign than in the Nf = 2
case is not understood at this point. It could be an effect associated with the quenching of
the strange quark. It could also be due to the fact that the RM123 13 calculation does not
probe deeply enough into the chiral regime – it has Mπ

>
∼ 270MeV – to pick up on important

chiral corrections. Of course, being less than a two-standard-deviation effect, it may be that
there is no problem at all and that differences from the LO result are actually small.

Given the exploratory nature of the RBC 07 calculation, its results do not allow us to draw
solid conclusions about the e.m. contributions to mu/md for Nf = 2. As discussed in Sec. 3.1.3
and here, the Nf = 2 + 1 results of Blum 10, PACS-CS 12, and QCDSF/UKQCD 15 do not
pass our selection criteria either. We therefore resort to the phenomenological estimates of the
electromagnetic self-energies discussed in Sec. 3.1.1, which are validated by recent, preliminary
lattice results.

Since RM123 13 [37] includes a lattice estimate of e.m. corrections, for the Nf = 2 final
results we simply quote the values of mu, md, and mu/md from RM123 13 given in Tab. 7:

mu = 2.40(23)MeV Ref. [37],

Nf = 2 : md = 4.80(23)MeV Ref. [37], (29)

mu/md = 0.50(4) Ref. [37],

with errors of roughly 10%, 5% and 8%, respectively. In these results, the errors are obtained
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by combining the lattice statistical and systematic errors in quadrature.
For Nf = 2+1 there is to date no final, published computation of e.m. corrections. Thus,

we take the LO estimate for mu/md of Eq. (28) and use the -8(4)% obtained above as an
estimate of the size of the corrections from higher orders in the chiral expansion. This gives
mu/md = 0.46(3). The two individual masses can then be worked out from the estimate (18)
for their mean. Therefore, for Nf = 2 + 1 we obtain:

mu = 2.16(9)(7)MeV ,

Nf = 2 + 1 : md = 4.68(14)(7)MeV , (30)

mu/md = 0.46(2)(2) .

In these results, the first error represents the lattice statistical and systematic errors, combined
in quadrature, while the second arises from the uncertainties associated with e.m. corrections
of Eq. (13). The estimates in Eq. (30) have uncertainties of order 5%, 3% and 7%, respectively.

Finally, for four flavours we simply adopt the results of ETM 14A which meet all of our
criteria.

mu = 2.36(24)MeV Ref. [9] ,

Nf = 2 + 1 + 1 : md = 5.03(26)MeV Ref. [9] , (31)

mu/md = 0.470(56) Ref. [9] .

Naively propagating errors to the end, we obtain (mu/md)Nf=2/(mu/md)Nf=2+1 = 1.09(10).
If instead of Eq. (29) we use the results from RM123 11, modified by the e.m. corrections
in Eq. (13), as was done in our previous review, we obtain (mu/md)Nf=2/(mu/md)Nf=2+1 =
1.11(7)(1), confirming again the strong cancellation of e.m. uncertainties in the ratio. The
Nf = 2 and 2+1 results are compatible at the 1 to 1.5 σ level. Clearly the difference between
three and four flavours is even smaller, and completely covered by the quoted uncertainties.

It is interesting to note that in the results above, the errors are no longer dominated by
the uncertainties in the input used for the electromagnetic corrections, though these are still
significant at the level of precision reached in the Nf = 2 + 1 results. This is due to the
reduction in the error on ǫ discussed in Sec. 3.1.1. Nevertheless, the comparison of Eqs. (28)
and (30) indicates that more than half of the difference between the predictionmu/md = 0.558
obtained from Weinberg’s mass formulae [88] and the result for mu/md obtained on the
lattice stems from electromagnetism, the higher orders in the chiral perturbation generating
a comparable correction.

In view of the fact that a massless up-quark would solve the strong CP-problem, many
authors have considered this an attractive possibility, but the results presented above exclude
this possibility: the value of mu in Eq. (30) differs from zero by 20 standard deviations. We
conclude that nature solves the strong CP-problem differently. This conclusion relies on lattice
calculations of kaon masses and on the phenomenological estimates of the e.m. self-energies
discussed in Sec. 3.1.1. The uncertainties therein currently represent the limiting factor in
determinations ofmu andmd. As demonstrated in Refs. [20–22, 29–35, 37, 43], lattice methods
can be used to calculate the e.m. self-energies. Further progress on the determination of the
light-quark masses hinges on an improved understanding of the e.m. effects.
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3.1.6 Estimates for R and Q

The quark-mass ratios

R ≡
ms −mud

md −mu
and Q2 ≡

m2
s −m2

ud

m2
d −m2

u

(32)

compare SU(3) breaking with isospin breaking. The quantity Q is of particular interest
because of a low-energy theorem [94], which relates it to a ratio of meson masses,

Q2
M ≡

M̂2
K

M̂2
π

·
M̂2

K − M̂2
π

M̂2
K0 − M̂2

K+

, M̂2
π ≡ 1

2(M̂
2
π+ + M̂2

π0) , M̂2
K ≡ 1

2(M̂
2
K+ + M̂2

K0) . (33)

Chiral symmetry implies that the expansion of Q2
M in powers of the quark masses (i) starts

with Q2 and (ii) does not receive any contributions at NLO:

QM
NLO

= Q . (34)

Inserting the estimates for the mass ratios ms/mud, and mu/md given for Nf = 2 in
Eqs. (17) and (29) respectively, we obtain

R = 40.7(3.7)(2.2) , Q = 24.3(1.4)(0.6) , (35)

where the errors have been propagated naively and the e.m. uncertainty has been separated
out, as discussed in the third paragraph after Eq. (28). Thus, the meaning of the errors is
the same as in Eq. (30). These numbers agree within errors with those reported in Ref. [37]
where values for ms and mud are taken from ETM 10B [54].

For Nf = 2 + 1, we use Eqs. (24) and (30) and obtain

R = 35.7(1.9)(1.8) , Q = 22.5(6)(6) , (36)

where the meaning of the errors is the same as above. The Nf = 2 and Nf = 2+1 results are
compatible within 2σ, even taking the correlations between e.m. effects into account.

Again, for Nf = 2 + 1 + 1, we simply take values from ETM 14A,

R = 35.6(5.1) , Q = 22.2(1.6) , (37)

which are quite compatible with two and three flavour results.
It is interesting to use these results to study the size of chiral corrections in the relations

of R and Q to their expressions in terms of meson masses. To investigate this issue, we use
χPT to express the quark-mass ratios in terms of the pion and kaon masses in QCD and then
again use Eqs. (10)–(12) to relate the QCD masses to the physical ones. Linearizing in the
corrections, this leads to

R
LO

= RM = 43.9− 10.8 ǫ+ 0.2 ǫπ0 − 0.2 ǫK0 − 10.7 ǫm , (38)

Q
NLO

= QM = 24.3− 3.0 ǫ+ 0.9 ǫπ0 − 0.1 ǫK0 + 2.6 ǫm . (39)

While the first relation only holds to LO of the chiral perturbation series, the second remains
valid at NLO, on account of the low-energy theorem mentioned above. The first terms on
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the right hand side represent the values of R and Q obtained with the Weinberg leading-
order formulae for the quark-mass ratios [88]. Inserting the estimates (13), we find that the
e.m. corrections lower the Weinberg values to RM = 36.7(3.3) andQM = 22.3(9), respectively.

Comparison of RM and QM with the full results quoted above gives a handle on higher-
order terms in the chiral expansion. Indeed, the ratios RM/R and QM/Q give NLO and

NNLO (and higher)-corrections to the relations R
LO

= RM and Q
NLO

= QM , respectively. The
uncertainties due to the use of the e.m. corrections of Eq. (13) are highly correlated in the nu-
merators and denominators of these ratios, and we make the simplifying assumption that they
cancel in the ratio. Thus, for Nf = 2 we evaluate Eqs. (38) and (39) using ǫ = 0.79(18)(18)
from RM123 13 [37] and the other corrections from Eq. (13), dropping all uncertainties. We
divide them by the results for R and Q in Eq. (35), omitting the uncertainties due to e.m.
We obtain RM/R ≃ 0.88(8) and QM/Q ≃ 0.91(5). We proceed analogously for Nf = 2 + 1
and 2+1+1, using ǫ = 0.70(3) from Eq. (13) and R and Q from Eqs. (36) and (37), and find
RM/R ≃ 1.02(5) and 1.03(17), and QM/Q ≃ 0.99(3) and 1.00(8). The chiral corrections
appear to be small for three and four flavours, especially those in the relation of Q to QM .
This is less true for Nf = 2, where the NNLO and higher corrections to Q = QM could be
significant. However, as for other quantities which depend on mu/md, this difference is not
significant.

As mentioned in Sec. 3.1.1, there is a phenomenological determination of Q based on
the decay η → 3π [95, 96]. The key point is that the transition η → 3π violates isospin
conservation. The dominating contribution to the transition amplitude stems from the mass
difference mu −md. At NLO of χPT, the QCD part of the amplitude can be expressed in a
parameter-free manner in terms of Q. It is well-known that the electromagnetic contributions
to the transition amplitude are suppressed (a thorough recent analysis is given in Ref. [97]).
This implies that the result for Q is less sensitive to the electromagnetic uncertainties than
the value obtained from the masses of the Nambu-Goldstone bosons. For a recent update of
this determination and for further references to the literature, we refer to Ref. [98]. Using
dispersion theory to pin down the momentum dependence of the amplitude, the observed
decay rate implies Q = 22.3(8) (since the uncertainty quoted in Ref. [98] does not include an
estimate for all sources of error, we have retained the error estimate given in Ref. [91], which is
twice as large). The formulae for the corrections of NNLO are available also in this case [99] –
the poor knowledge of the effective coupling constants, particularly of those that are relevant
for the dependence on the quark masses, is currently the limiting factor encountered in the
application of these formulae.

As was to be expected, the central value ofQ obtained from η-decay agrees exactly with the
central value obtained from the low-energy theorem: we have used that theorem to estimate
the coefficient ǫ, which dominates the e.m. corrections. Using the numbers for ǫm, ǫπ0 and
ǫK0 in Eq. (13) and adding the corresponding uncertainties in quadrature to those in the
phenomenological result for Q, we obtain

ǫ
NLO

= 0.70(28) . (40)

The estimate (13) for the size of the coefficient ǫ is taken from here, as it is confirmed by the
most recent, preliminary lattice determinations [29–31, 34, 35, 37].

Our final results for the masses mu, md, mud, ms and the mass ratios mu/md, ms/mud,
R, Q are collected in Tabs. 8 and 9. We separate mu, md, mu/md, R and Q from mud, ms

and ms/mud, because the latter are completely dominated by lattice results while the former
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still include some phenomenological input.

Nf mud ms ms/mud

2+1+1 3.70(17) 93.9(1.1) 27.30(34)

2+1 3.373(80) 92.0(2.1) 27.43(31)

2 3.6(2) 101(3) 27.3(9)

Table 8: Our estimates for the strange-quark and the average up-down-quark masses in the
MS scheme at running scale µ = 2GeV. Numerical values are given in MeV. In the results
presented here, the error is the one which we obtain by applying the averaging procedure of
Sec. 2.3 to the relevant lattice results. We have added an uncertainty to the Nf = 2 + 1
results, associated with the neglect of the charm sea-quark and isospin-breaking effects, as
discussed around Eqs. (18) and (24). This uncertainty is not included in the Nf = 2 results,
as it should be smaller than the uncontrolled systematic associated with the neglect of strange
sea-quark effects.

Nf mu md mu/md R Q

2+1+1 2.36(24) 5.03(26) 0.470(56) 35.6(5.1) 22.2 (1.6)

2+1 2.16(9)(7) 4.68(14)(7) 0.46(2)(2) 35.0(1.9)(1.8) 22.5(6)(6)

2 2.40(23) 4.80(23) 0.50(4) 40.7(3.7)(2.2) 24.3(1.4)(0.6)

Table 9: Our estimates for the masses of the two lightest quarks and related, strong isospin-
breaking ratios. Again, the masses refer to the MS scheme at running scale µ = 2GeV.
Numerical values are given in MeV. In the results presented here, the first error is the one
that comes from lattice computations while the second for Nf = 2 + 1 is associated with
the phenomenological estimate of e.m. contributions, as discussed after Eq. (30). The second
error on the Nf = 2 results for R and Q is also an estimate of the e.m. uncertainty, this time
associated with the lattice computation of Ref. [37], as explained after Eq. (35). We present
these results in a separate table, because they are less firmly established than those in Tab. 8.
For Nf = 2 + 1 and 2+1+1 they still include information coming from phenomenology, in
particular on e.m. corrections, and for Nf = 2 the e.m. contributions are computed neglecting
the feedback of sea quarks on the photon field.

3.2 Charm-quark mass

In the present review we collect and discuss for the first time the lattice determinations of
the MS charm-quark mass mc. Most of the results have been obtained by analyzing the
lattice-QCD simulations of 2-point heavy-light- or heavy-heavy-meson correlation functions,
using as input the experimental values of the D, Ds and charmonium mesons. The exceptions
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are represented by the HPQCD 14A [11] result at Nf = 2 + 1 + 1, the HPQCD 08B [79],
HPQCD 10 [66] and JLQCD 15B [100] results at Nf = 2 + 1, and the ETM 11F [101] result
at Nf = 2, where the moments method has been employed. The latter is based on the lattice
calculation of the Euclidean time moments of pseudoscalar-pseudoscalar correlators for heavy-
quark currents followed by an OPE expansion dominated by perturbative QCD effects, which
provides the determination of both the heavy-quark mass and the strong coupling constant
αs.

The heavy-quark actions adopted by the various lattice collaborations have been reviewed
already in the FLAG 13 review [2], and their descriptions can be found in Sec. A.1.3. While
the charm mass determined with the moments method does not need any lattice evaluation
of the mass renormalization constant Zm, the extraction of mc from 2-point heavy-meson
correlators does require the nonperturbative calculation of Zm. The lattice scale at which Zm

is obtained, is usually at least of the order 2−3 GeV, and therefore it is natural in this review
to provide the values of mc(µ) at the renormalization scale µ = 3 GeV. Since the choice of
a renormalization scale equal to mc is still commonly adopted (as by PDG [78]), we have
collected in Tab. 10 the lattice results for both mc(mc) and mc(3 GeV), obtained at Nf = 2,
2 + 1 and 2 + 1 + 1. When not directly available in the publications, we apply a conversion
factor equal either to 0.900 between the scales µ = 2 GeV and µ = 3 GeV or to 0.766 between
the scales µ = mc and µ = 3 GeV, obtained using perturbative QCD evolution at four loops
assuming ΛQCD = 300 MeV for Nf = 4.

In the next subsections we review separately the results of mc(mc) for the various values
of Nf .

3.2.1 Nf = 2 + 1 + 1 results

There are three recent results employing four dynamical quarks in the sea. ETM 14 [9] uses
15 twisted mass gauge ensembles at 3 lattice spacings ranging from 0.062 to 0.089 fm (using
fπ as input), in boxes of size ranging from 2.0 to 3.0 fm and pion masses from 210 to 440
MeV (explaining the tag ◦ in the chiral extrapolation and the tag ⋆ for the continuum
extrapolation). The value of MπL at their smallest pion mass is 3.2 with more than two
volumes (explaining the tag ◦ in the finite-volume effects). They fix the strange mass with
the kaon mass and the charm one with that of the Ds and D mesons.

ETM 14A [102] uses 10 out of the 15 gauge ensembles adopted in ETM 14 spanning
the same range of values for the pion mass and the lattice spacing, but the latter is fixed
using the nucleon mass. Two lattice volumes with size larger than 2.0 fm are employed.
The physical strange and the charm mass are obtained using the masses of the Ω− and Λ+

c

baryons, respectively.
HPQCD 14A [11] works with the moments method adopting HISQ staggered fermions.

Their results are based on 9 out of the 21 ensembles carried out by the MILC collaboration [10]
at 4 values of the coupling β corresponding to lattice spacings in the range from 0.057 to 0.153
fm, in boxes of sizes up to 5.8 fm and with taste-Goldstone-pion masses down to 130 MeV and
RMS-pion masses down to 173 MeV. The strange- and charm-quark masses are fixed using as
input the lattice result Ms̄s = 688.5(2.2) MeV, calculated without including s̄s annihilation
effects, and Mηc = 2.9863(27) GeV, obtained from the experimental ηc mass after correcting
for c̄c annihilation and e.m. effects. All of the selection criteria of Sec. 2.1.1 are satisfied with
the tag ⋆ 4.

4Note that in Section 9.7.2 different coding criteria are adopted and the HPQCD 14A paper is tagged
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mc(mc) mc(3 GeV)

HPQCD 14A [11] 2+1+1 A ⋆ ⋆ ⋆ − 1.2715(95) 0.9851(63)
ETM 14A [102] 2+1+1 A ◦ ⋆ ◦ ⋆ 1.3478(27)(195) 1.0557(22)(153)
ETM 14 [9] 2+1+1 A ◦ ⋆ ◦ ⋆ 1.348(46) 1.058(35)

JLQCD 15B [100] 2+1 C ◦ ⋆ ⋆ − 1.2769(21)(89) 0.9948(16)(69)
χQCD 14 [103] 2+1 A ◦ ◦ ◦ ⋆ 1.304(5)(20) 1.006(5)(22)
HPQCD 10 [66] 2+1 A ◦ ⋆ ◦ − 1.273(6) 0.986(6)
HPQCD 08B [79] 2+1 A ◦ ⋆ ◦ − 1.268(9) 0.986(10)

ALPHA 13B [104] 2 C ⋆ ◦ ⋆ ⋆ 1.274(36) 0.976(28)
ETM 11F [101] 2 C ◦ ⋆ ◦ − 1.279(12)/1.296(18)⋆ 0.979(09)/0.998(14)⋆

ETM 10B [54] 2 A ◦ ⋆ ◦ ⋆ 1.28(4) 1.03(4)

PDG [78] 1.275(25)

⋆ Two results are quoted.

Table 10: Lattice results for the MS-charm-quark mass mc(mc) and mc(3 GeV) in GeV,
together with the colour coding of the calculations used to obtain these. When not directly
available in the publications, a conversion factor equal to 0.900 between the scales µ = 2 GeV
and µ = 3 GeV (or equal to 0.766 between the scales µ = mc and µ = 3 GeV) has been
considered.

According to our rules on the publication status all the three results can enter the FLAG
average at Nf = 2 + 1 + 1. The determinations of mc obtained by ETM 14 and 14A agree
quite well with each other, but they are not compatible with the HPQCD 14A result. There-
fore we first combine the two ETM results with a 100% correlation in the statistical error,
yielding mc(mc) = 1.348(20)GeV. Then we perform the average with the HPQCD 14A result,
obtaining the final FLAG averages

mc(mc) = 1.286 (30) GeV Refs. [9, 11], (41)
Nf = 2 + 1 + 1:

mc(3 GeV) = 0.996 (25) GeV Refs. [9, 11], (42)

where the errors include a quite large value (3.5 and 4.4, respectively) for the stretching factor
√

χ2/dof coming from our rules for the averages discussed in Sec. 2.2.

3.2.2 Nf = 2 + 1 results

The HPQCD 10 [66] result is based on the moments method adopting a subset of Nf = 2+1
Asqtad-staggered-fermion ensembles from MILC [25], on which HISQ valence fermions are

differently for the continuum extrapolation.
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studied. The charm mass is fixed from that of the ηc meson, Mηc = 2.9852(34) GeV corrected
for c̄c annihilation and e.m. effects. HPQCD 10 replaces the result HPQCD 08B [79], in which
Asqtad staggered fermions have been used also for the valence quarks.

χQCD 14 [103] uses a mixed-action approach based on overlap fermions for the valence
quarks and on domain-wall fermions for the sea quarks. They adopt six of the gauge ensembles
generated by the RBC/UKQCD collaboration [70] at two values of the lattice spacing (0.087
and 0.11 fm) with unitary pion masses in the range from 290 to 420 MeV. For the valence
quarks no light-quark masses are simulated. At the lightest pion mass Mπ ≃ 290 MeV, the
value of MπL is 4.1, which satisfies the tag ◦ for the finite-volume effects. The strange- and
charm-quark masses are fixed together with the lattice scale by using the experimental values
of the Ds, D

∗
s and J/ψ meson masses.

JLQCD 15B [100] determines the charm mass through the moments method using Möbius
domain-wall fermions at three values of the lattice spacing, ranging from 0.044 to 0.083 fm.
The lightest pion mass is ≃ 230 MeV and the corresponding value of MπL is ≃ 4.4.

Thus, according to our rules on the publication status, the FLAG average for the charm-
quark mass at Nf = 2 + 1 is obtained by combining the two results HPQCD 10 and χQCD
14, leading to

mc(mc) = 1.275 (8) GeV Refs. [66, 103], (43)
Nf = 2 + 1:

mc(3 GeV) = 0.987 (6) GeV Refs. [66, 103], (44)

where the error on mc(mc) includes a stretching factor
√

χ2/dof ≃ 1.4 as discussed in Sec. 2.2.

3.2.3 Nf = 2 results

We turn now to the three results at Nf = 2.
ETM 10B [54] is based on tmQCD simulations at four values of the lattice spacing in the

range from 0.05 fm to 0.1 fm, with pion masses as low as 270 MeV at two lattice volumes. They
fix the strange-quark mass with either MK or Ms̄s and the charm mass using alternatively
the D, Ds and ηc masses.

ETM 11F [101] is based on the same gauge ensemble as ETM 10B, but the moments
method is adopted.

ALPHA 13B uses a subset of the CLS gauge ensembles with O(a)-improved Wilson
fermions generated at two values of the lattice spacing (0.048 fm and 0.065 fm), using the
kaon decay constant to fix the scale. The pion masses are as low as 190 MeV with the value of
MπL equal to ≃ 4 at the lightest pion mass (explaining the tag ⋆ for finite-volume effects).

According to our rules on the publication status ETM 10B becomes the FLAG average
at Nf = 2, n-mely

mc(mc) = 1.28 (4) GeV Ref. [54], (45)
Nf = 2:

mc(3 GeV) = 1.03 (4) GeV Ref. [54]. (46)

In Fig. 4 the lattice results of Tab. 10 and the FLAG averages obtained at Nf = 2, 2 + 1
and 2 + 1 + 1 are presented.

3.2.4 Lattice determinations of the ratio mc/ms

Because some of the results for the light-quark masses given in this review are obtained via
the quark-mass ratio mc/ms, we now review also these lattice calculations, which are listed
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Figure 4: Lattice results and FLAG averages atNf = 2, 2+1, and 2+1+1 for the charm-quark
mass mc(3 GeV).

in Tab. 11.
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mc/ms

HPQCD 14A [11] 2+1+1 A ⋆ ⋆ ⋆ 11.652(35)(55)
FNAL/MILC 14A [10] 2+1+1 A ⋆ ⋆ ⋆ 11.747(19)(+59

−43)
ETM 14 [9] 2+1+1 A ◦ ⋆ ◦ 11.62(16)

χQCD 14 [103] 2+1 A ◦ ◦ ◦ 11.1(8)
HPQCD 09A [71] 2+1 A ◦ ⋆ ⋆ 11.85(16)

ETM 14D [87] 2 C ⋆ ¥ ¥ 12.29(10)
Dürr 11 [55] 2 A ◦ ⋆ ◦ 11.27(30)(26)
ETM 10B [54] 2 A ◦ ⋆ ◦ 12.0(3)

Table 11: Lattice results for the quark-mass ratio mc/ms, together with the colour coding of
the calculations used to obtain these.

We begin with the Nf = 2 results. Besides the result ETM 10B, already discussed in
Sec. 3.2.3, there are two more results, Dürr 11 [55] and ETM 14D [87]. Dürr 11 [55] is based
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on QCDSF Nf = 2 O(a)-improved Wilson-fermion simulations [62, 105] on which valence,
Brillouin-improved Wilson quarks [106] are considered. It features only 2 ensembles with
Mπ < 400 MeV. The bare axial-Ward-identity (AWI) masses for ms and mc are tuned to
simultaneously reproduce the physical values ofM2

s̄s/(M
2
D∗

s
−M2

Ds
) and (2M2

D∗
s
−M2

s̄s)/(M
2
D∗

s
−

M2
Ds

), where M2
s̄s = 685.8(8) MeV is the quark-connected-s̄s pseudoscalar mass.

The ETM 14D result [87] is based on recent ETM gauge ensembles generated close to the
physical point with the addition of a clover term to the tmQCD action. The new simulations
are performed at a single lattice spacing of ≃ 0.09 fm and at a single box size L ≃ 4 fm
and therefore their calculations do not pass our criteria for the continuum extrapolation and
finite-volume effects. The FLAG average at Nf = 2 can be therefore obtained by averaging
ETM 10B and Dürr 11, obtaining

Nf = 2: mc/ms = 11.74 (35) Ref. [54, 55], (47)

where the error includes the stretching factor
√

χ2/dof ≃ 1.5.
The situation is similar also for the Nf = 2 + 1 results, as besides χQCD 14 there is

only the result HPQCD 09A [71]. The latter is based on a subset of Nf = 2 + 1 Asqtad-
staggered-fermion simulations from MILC, on which HISQ-valence fermions are studied. The
strange mass is fixed with Ms̄s = 685.8(4.0),MeV and the charm’s from that of the ηc,
Mηc = 2.9852(34) GeV corrected for c̄c annihilation and e.m. effects. By combing the results
χQCD 14 and HPQCD 09A we obtain

Nf = 2 + 1: mc/ms = 11.82 (16) Refs. [71, 103], (48)

with a χ2/dof ≃ 0.85.
Turning now to the Nf = 2 + 1 + 1 results, in addition to the HPQCD 14A and ETM

14 calculations, already described in Sec. 3.2.1, we consider the recent FNAL/MILC 14 re-
sult [10], where HISQ staggered fermions are employed. Their result is based on the use of
21 gauge ensembles at 4 values of the coupling β corresponding to lattice spacings in the
range from 0.057 to 0.153 fm, in boxes of sizes up to 5.8 fm and with taste-Goldstone-pion
masses down to 130 MeV and RMS-pion masses down to 143 MeV. They fix the strange mass
with Ms̄s, corrected for e.m. effects with ǭ = 0.84(20) [32]. The charm mass is fixed with
the mass of the Ds meson. As for the HPQCD 14A result, all of our selection criteria are
satisfied with the tag ⋆ . However a slight tension exists between the two results. Indeed by
combining HPQCD 14A and FNAL/MILC 14 results, assuming a 100 % correlation between
the statistical errors (since the two results share the same gauge configurations), we obtain
mc/ms = 11.71(6), where the error includes the stretching factor

√

χ2/dof ≃ 1.35. A further
average with the ETM 14A result leads to our final average

Nf = 2 + 1 + 1: mc/ms = 11.70 (6) Refs. [9–11], (49)

which has a remarkable overall precision of 0.5 %.
All of the results for mc/ms discussed above are shown in Fig. 5 together with the FLAG

averages corresponding to Nf = 2, 2 + 1 and 2 + 1 + 1.
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Figure 5: Lattice results for the ratio mc/ms listed in Tab. 11 and the FLAG averages
corresponding to Nf = 2, 2 + 1 and 2 + 1 + 1.

3.3 Bottom-quark mass

We now give the lattice results for the MS-bottom-quark mass mb for the first time as part of
this review. Related heavy-quark actions and observables have been discussed in the FLAG
13 review [2], and descriptions can be found in Sec. A.1.3. In Tab. 12 we have collected the
lattice results for mb(mb) obtained at Nf = 2, 2 + 1 and 2 + 1 + 1, which in the following
we review separately. Available results for the quark-mass ratio mb/mc are also reported.
Afterwards we evaluate the corresponding FLAG averages.

3.3.1 Nf = 2 + 1 + 1

Results have been published by HPQCD using NRQCD and HISQ-quark actions (HPQCD
14B [107] and HPQCD 14A [11], respectively). In both works the b-quark mass is computed
with the moments method, that is, from Euclidean-time moments of two-point, heavy-heavy
meson correlation functions (see Sec. 9.7 for a description of the method).

In HPQCD 14B the b-quark mass is computed from ratios of the moments Rn of heavy
current-current correlation functions, namely

[

Rnrn−2

Rn−2rn

]1/2 M̄kin

2mb
=

M̄Υ,ηb

2m̄b(µ)
, (50)

where rn are the perturbative moments calculated at N3LO, M̄kin is the spin-averaged kinetic
mass of the heavy-heavy vector and pseudoscalar mesons and M̄Υ,ηb is the experimental spin
average of the Υ and ηb masses. The kinetic mass M̄kin is chosen since in the lattice calculation
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mb(mb) mb/mc

HPQCD 14B [107] 2+1+1 A ⋆ ⋆ ⋆ ⋆ X 4.196(23)†

ETM 14B [108] 2+1+1 C ◦ ⋆ ◦ ⋆ X 4.26(7)(14) 4.40(6)(5)
HPQCD 14A [11] 2+1+1 A ⋆ ⋆ ⋆ − X 4.162(48) 4.528(14)(52)

HPQCD 13B [109] 2+1 A ¥ ◦ − − X 4.166(43)
HPQCD 10 [66] 2+1 A ⋆ ⋆ ⋆ − X 4.164(23)⋆ 4.51(4)

ETM 13B [110] 2 A ◦ ⋆ ◦ ⋆ X 4.31(9)(8)
ALPHA 13C [111] 2 A ⋆ ⋆ ⋆ ⋆ X 4.21(11)
ETM 11A [112] 2 A ◦ ⋆ ◦ ⋆ X 4.29(14)

PDG [78] 4.18(3)

† Warning: only two pion points are used for chiral extrapolation.
⋆ The number that is given is mb(10 GeV, Nf = 5) = 3.617(25) GeV.

Table 12: Lattice results for the MS-bottom-quark mass mb(mb) in GeV, together with the
systematic error ratings for each. Available results for the quark mass ratio mb/mc are also
reported.

the splitting of the Υ and ηb states is inverted. In Eq. (50) the bare mass mb appearing on
the left hand side is tuned so that the spin-averaged mass agrees with experiment, while the
mass mb at the fixed scale µ = 4.18 GeV is extrapolated to the continuum limit using three
HISC (MILC) ensembles with a ≈ 0.15, 0.12 and 0.09 fm and two pion masses, one of which is
the physical one. Therefore according to our rules on the chiral extrapolation a warning must
be given. Their final result is mb(µ = 4.18GeV) = 4.207(26) GeV, where the error is from
adding systematic uncertainties in quadrature only (statistical errors are smaller than 0.1%
and ignored). The errors arise from renormalization, perturbation theory, lattice spacing, and
NRQCD systematics. The finite-volume uncertainty is not estimated, but at the lowest pion
mass they have mπL ≃ 4, which leads to the tag ⋆ .

In HPQCD 14A the quark mass is computed using a similar strategy as above but with
HISQ heavy quarks instead of NRQCD. The gauge-field ensembles are the same as in HPQCD
14B above plus the one with a = 0.06 fm (four lattice spacings in all). Bare heavy-quark
masses are tuned to their physical values using the ηh mesons, and ratios of ratios yield
mh/mc. The MS-charm-quark mass determined as described in Sec. 3.2 then gives mb. The
moment ratios are expanded using the OPE, and the quark masses and αS are determined
from fits of the lattice ratios to this expansion. The fits are complicated: HPQCD uses cubic
splines for valence- and sea-mass dependence, with several knots, and many priors for 21 ratios
to fit 29 data points. Taking this fit at face value results in a ⋆ rating for the continuum
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limit since they use four lattice spacings down to 0.06 fm. See however the detailed discussion
of the continuum limit given in Sec. 9.7 on αS .

The third four-flavour result is from the ETM Collaboration and appears in a conference
proceedings, so it is not included in our final average. The calculation is performed on a set
of configurations generated with twisted Wilson fermions with three lattice spacings in the
range 0.06 to 0.09 fm and with pion masses in the range 210 to 440 MeV. The b-quark mass is
determined from a ratio of heavy-light pseudoscalar meson masses designed to yield the quark
pole mass in the static limit. The pole mass is related to the MS mass through perturbation
theory at N3LO. The key idea is that by taking ratios of ratios, the b-quark mass is accessible
through fits to heavy-light(strange)-meson correlation functions computed on the lattice in
the range ∼ 1− 2×mc and the static limit, the latter being exactly 1. By simulating below
mb, taking the continuum limit is easier. They find mb(mb) = 4.26(7)(14) GeV, where the
first error is statistical and the second systematic. The dominant errors come from setting
the lattice scale and fit systematics.

3.3.2 Nf = 2 + 1

HPQCD 13B [109] extracts mb from a lattice determination of the Υ energy in NRQCD and
the experimental value of the meson mass. The latter quantities yield the pole mass which
is related to the MS mass in 3-loop perturbation theory. The MILC coarse (0.12 fm) and
fine (0.09 fm) Asqtad-2+1-flavour ensembles are employed in the calculation. The bare light-
(sea)-quark masses correspond to a single, relatively heavy, pion mass of about 300 MeV. No
estimate of the finite-volume error is given.

The value of mb(mb) reported in HPQCD 10 [66] is computed in a very similar fashion
to the one in HPQCD 14A described in the last section, except that MILC 2+1-flavour-
Asqtad ensembles are used under HISQ-heavy-valence quarks. The lattice spacings of the
ensembles range from 0.18 to 0.045 fm and pion masses down to about 165 MeV. In all, 22
ensembles were fit simultaneously. An estimate of the finite-volume error based on leading-
order perturbation theory for the moment ratio is also provided. Details of perturbation
theory and renormalization systematics are given in Sec. 9.7.

3.3.3 Nf = 2

The ETM Collaboration computes mb(mb) using the ratio method described above on two-
flavour twisted-mass gauge ensembles with four values of the lattice spacing in the range
0.10 to 0.05 fm and pion masses between 280 and 500 MeV (ETM 13B updates ETM 11).
The heavy-quark masses cover a range from charm to a little more than three GeV, plus
the exact static-limit point. They find mb(mb) = 4.31(9)(8) GeV for two-flavour running,
while mb(mb) = 4.27(9)(8) using four-flavour running, from the 3 GeV scale used in the
N3LO perturbative matching calculation from the pole mass to the MS mass. The latter
are computed nonperturbatively in the RI-MOM scheme at 3 GeV and matched to MS. The
dominant errors are combined statistical+fit(continuum+chiral limits) and the uncertainty in
setting the lattice scale. ETM quotes the average of two- and five-flavour results, mb(mb) =
4.29(9)(8)(2) where the last error is one-half the difference between the two. In our average
(see below), we use the two-flavour result.

The Alpha Collaboration uses HQET for heavy-light mesons to obtain mb [111] (ALPHA
13C). They employ CLS, nonperturbatively improved, Wilson gauge field ensembles with
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three lattice spacings (0.075-0.048 fm), pion masses from 190 to 440 MeV, and three or four
volumes at each lattice spacing, with mπL > 4.0. The bare-quark mass is related to the
RGI-scheme mass using the Schrödinger Functional technique with conversion to MS through
four-loop anomalous dimensions for the mass. The final result, extrapolated to the continuum
and chiral limits, is mb(mb) = 4.21(11) with two-flavour running, where the error combines
statistical and systematic uncertainties. The value includes all corrections in HQET through
Λ2/mb, but repeating the calculation in the static limit yields the identical result, indicating
the HQET expansion is under very good control.

3.3.4 Averages for mb(mb)

Taking the results that meet our rating criteria, ◦, or better, we compute the averages from
HPQCD 14A and 14B for Nf = 2 + 1 + 1, ETM 13B and ALPHA 13C for Nf = 2, and we
take HPQCD 10 as estimate for Nf = 2 + 1, obtaining

Nf = 2 + 1 + 1 : mb(mb) = 4.190(21) Refs. [11, 107], (51)

Nf = 2 + 1 : mb(mb) = 4.164(23) Ref. [66], (52)

Nf = 2 : mb(mb) = 4.256(81) Refs. [110, 111]. (53)

Since HPQCD quotes mb(mb) values using Nf = 5 running, we used those values directly in
these Nf = 2 + 1 + 1 and 2+1 averages. The results ETM 13B and ALPHA 13C, entering
the average at Nf = 2, correspond to the Nf = 2 running.

All the results for mb(mb) discussed above are shown in Fig. 6 together with the FLAG
averages corresponding to Nf = 2, 2 + 1 and 2 + 1 + 1.
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Figure 6: Lattice results and FLAG averages at Nf = 2, 2+ 1, and 2+ 1+ 1 for the b-quark
mass mb(mb). The updated PDG value from Ref. [78] is reported for comparison.
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