Size: 45373
Comment:
|
← Revision 172 as of 2024-11-07 09:17:13 ⇥
Size: 46198
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 2: | Line 2: |
<<Include(LatestVersion)>> The version of the FLAG 19 review as of December 2020 is accessible [[attachment:Media/FLAG_2020_webupdate.pdf|here|&do=get]]. It contains updated sections as follows: * |Vud| and |Vus|: updated December 2020 * B-meson decay constants, mixing parameters, and form factors: updated December 2020 |
|
Line 3: | Line 10: |
The 2019 edition of the FLAG review can be downloaded [[attachment:Media/FLAG_webupdate.pdf|here|&do=get]]. The separate sections can be downloaded as separate pdf-files following the links in the table of contents below. |
The original 2019 edition of the FLAG review can be downloaded [[attachment:Media/FLAG_2019.pdf|here|&do=get]]. The version dated March 4, 2020 is the one accepted for publication in EPJC. The EPJC version can be obtained from [[http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-019-7354-7|here]]. The separate sections can be downloaded as separate pdf-files following the links in the table of contents below, or via the menu in the sidebar. Clicking on the FLAG logo in the upper left corner links back to this main page. |
Line 9: | Line 16: |
In the notes we compile detailed information on the simulations used to calculate the quantities discussed in the review. Here we provide the complete tables, in contrast to the paper version of the review which contains this information only for results that have appeared since FLAG 16. The original complete 2015/2016 review is still accessible from [[http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-016-4509-7| EPJC]]. The 2016/2017 updates are available from [[http://flag2016.unibe.ch|here]]. The 2013/2014 review is accessible [[attachment:Media/FLAG_2013.pdf|here|&do=get]] or from [[http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-014-2890-7|EPJC]]. |
In the notes we compile detailed information on the simulations used to calculate the quantities discussed in the review. Here we provide the complete tables, in contrast to the paper version of the review which contains this information only for results that have appeared since FLAG 16. The original complete 2015/2016 review is still accessible from [[http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-016-4509-7| EPJC]]. The 2016/2017 updates are available from [[http://flag.unibe.ch/2016|here]]. The 2013/2014 review is accessible [[attachment:Media/FLAG_2013.pdf|here|&do=get]] or from [[http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-014-2890-7|EPJC]]. |
Line 18: | Line 23: |
The introduction with the updated summary tables can be downloaded [[attachment:Media/FLAG_introduction_webupdate.pdf|here|&do=get]]. | The introduction with the updated summary tables can be downloaded [[attachment:Media/FLAG_introduction.pdf|here|&do=get]]. |
Line 124: | Line 129: |
||<-6(#eeeeee tablestyle="width: 70%;">'''Table 2'''|| ||<-6(>Summary of the main results of this review concerning quark masses, light-meson decay constants, LECs, and kaon mixing parameters. These are grouped in terms of Nf, the number of dynamical quark flavours in lattice simulations. Quark masses are given in the RGI scheme, except for those for Nf=2 which are given in the ¯MS scheme at running scale μ=2GeV. Results for the quark condensate are given in the ¯MS scheme with μ=2GeV. BSM bag parameters B2,3,4,5 are given in the ¯MS scheme at scale μ=3GeV. Further specifications of the quantities are given in the quoted sections. For each result we provide the list of references that entered the FLAG average or estimate in the bibtex file for download. We recommend consulting the detailed tables and figures in the relevant section for more significant information and for explanations on the source of the quoted errors.|| |
||<-6(#eeeeee tablestyle="width: 70%;">'''Table 1'''|| ||<-6(>Summary of the main results of this review concerning quark masses, light-meson decay constants, LECs, and kaon mixing parameters. These are grouped in terms of Nf, the number of dynamical quark flavours in lattice simulations. Quark masses and the quark condensate are given in the ¯MS scheme at running scale μ=2GeV, unless otherwise indicated. BSM bag parameters B2,3,4,5 are given in the ¯MS scheme at scale μ=3GeV. Further specifications of the quantities are given in the quoted sections. Results for Nf=2 quark masses are unchanged since FLAG 16<<BetterFootNote(refName="aoki_2")>>. For each result we provide the list of references that entered the FLAG average or estimate in the bibtex file for download. We recommend consulting the detailed tables and figures in the relevant section for more significant information and for explanations on the source of the quoted errors.|| |
Line 128: | Line 132: |
|| $m_{ud}^{\rm RGI}$ [MeV] || [[Quark masses|3.1.4]] || 4.746(60)(55) || 4.682(57)(55) || || [[attachment:Media/mud.bib|bib|&do=get]] || || ms [MeV] || [[Quark masses|3.1.4]] || 129.6(1.0)(1.5) || 128.1(1.2)(1.5) || || [[attachment:Media/ms.bib|bib|&do=get]] || |
|| mud [MeV] || [[Quark masses|3.1.4]] || 3.410(43) || 3.364(41) || || [[attachment:Media/mud.bib|bib|&do=get]] || || ms [MeV] || [[Quark masses|3.1.4]] || 93.44(68) || 92.03(88) || || [[attachment:Media/ms.bib|bib|&do=get]] || |
Line 131: | Line 135: |
|| mRGIu [MeV] || [[Quark masses|3.1.6]] || 3.48(24)(4) || 3.16(13)(4) || ||[[attachment:Media/ratio_mumd.bib|bib|&do=get]] || || mRGId [MeV] || [[Quark masses|3.1.6]] || 6.80(28)(8) || 6.50(13)(8)|| || [[attachment:Media/ratio_mumd.bib|bib|&do=get]] || || mu/md || [[Quark masses|3.1.6]] || 0.513(31) || 0.485(19) || 0.50(4) || [[attachment:Media/ratio_mumd.bib|bib|&do=get]] || || mRGIc [GeV] || [[Quark masses|3.2.2]] || 1.521(17)(14) || 1.529(9)(14) || || [[attachment:Media/mc.bib|bib|&do=get]] || |
|| mu [MeV] || [[Quark masses|3.1.6]] || 2.50(17) || 2.27(9) || ||[[attachment:Media/mu.bib|bib|&do=get]] || || md [MeV] || [[Quark masses|3.1.6]] || 4.88(20) || 4.67(9) || ||[[attachment:Media/md.bib|bib|&do=get]] || || mu/md || [[Quark masses|3.1.6]] || 0.513(31) || 0.485(19) || || [[attachment:Media/ratio_mumd.bib|bib|&do=get]] || || ¯mc(3GeV) [GeV] || [[Quark masses|3.2.2]] || 0.988(7) || 0.992(6) || || [[attachment:Media/mc.bib|bib|&do=get]] || |
Line 136: | Line 140: |
|| ${m}_b^{\rm RGI}$ [GeV] || [[Quark masses|3.3]] || 6.936(20)(54) || 6.874(38)(54) || || [[attachment:Media/mb.bib|bib|&do=get]] || || f+(0) || [[V(ud) and V(us)|4.3]] || 0.9706(27) || 0.9677(27) || 0.9560(57)(62) || [[attachment:Media/f+0.bib|bib|&do=get]] || || f_{K^\pm}/f_{\pi^\pm} || [[V(ud) and V(us)|4.3]] || 1.1932(19) || 1.1917(37) || 1.205(18) || [[attachment:Media/RfKfpi.bib|bib|&do=get]] || |
|| $\overline{m}_b(\overline{m}_b)$ [GeV] || [[Quark masses|3.3]] || 4.198 (12) || 4.164 (23) || || [[attachment:Media/mb.bib|bib|&do=get]] || || f+(0) || [[V(ud) and V(us)|4.3]] || 0.9698(17) || 0.9677(27) || 0.9560(57)(62) || [[attachment:Media/f+0.bib|bib|&do=get]] || || f_{K^\pm}/f_{\pi^\pm} || [[V(ud) and V(us)|4.3]] || 1.1932(21) || 1.1917(37) || 1.205(18) || [[attachment:Media/RfKfpi.bib|bib|&do=get]] || |
Line 174: | Line 178: |
|| α(5)¯MS(MZ) ||[[The strong coupling alpha_s|9.10]] ||<-2:>0.11823(81) || ||[[attachment:Media/alphaMSbarZ.bib|bib|&do=get]] || | || α(5)¯MS(MZ) ||[[The strong coupling alpha_s|9.10]] ||<-2:>0.1182(8) || ||[[attachment:Media/alphaMSbarZ.bib|bib|&do=get]] || |
Line 207: | Line 211: |
<<BetterFootNote("Working groups were given the option of including papers submitted to {\tt arxiv.org} before the closing date but published after this date. This flexibility allows this review to be up-to-date at the time of submission. Three papers of this type were included: Ref. [5] in Secs. 7 and 8, and Refs. [6] and [7] in Sec. 10.")>> | <<BetterFootNote("Working groups were given the option of including papers submitted to [[http://arxiv.org|arXiv.org]] before the closing date but published after this date. This flexibility allows this review to be up-to-date at the time of submission. Three papers of this type were included: Ref. [5] in Secs. 7 and 8, and Refs. [6] and [7] in Sec. 10.")>> |
Line 221: | Line 225: |
||<35%-2 style="border:none;">'''Editorial Board (EB)'''||<( style="border:none;">G. Colangelo, A. Jüttner, S. Hashimoto, S. Sharpe, T. Vladikas, U. Wenger || | ||<35%-2 style="border:none;">'''Editorial Board (EB)'''||<( style="border:none;">G. Colangelo, A. Jüttner, S. Hashimoto, S. Sharpe, U. Wenger || |
Line 228: | Line 232: |
||<35%-2 style="border:none;">''B(s), D ~-semileptonic and radiative decays-~''||<( style="border:none;">E. Lunghi, D. Becirevic, S. Gottlieb, C. Pena|| | ||<35%-2 style="border:none;">''B(s), D semileptonic and radiative decays''||<( style="border:none;">E. Lunghi, D. Becirevic, S. Gottlieb, C. Pena|| |
Line 344: | Line 348: |
The section on the [[Low-energy constants]] can be downloaded [[attachment:Media/FLAG_LECs.pdf|here|&do=get]]. | The section on the [[Low-energy constants|low-energy constants]] can be downloaded [[attachment:Media/FLAG_LECs.pdf|here|&do=get]]. |
Line 348: | Line 352: |
The section on the [[Kaon mixing]] can be downloaded [[attachment:Media/FLAG_BK.pdf|here|&do=get]]. | The section on the [[Kaon mixing|kaon mixing]] can be downloaded [[attachment:Media/FLAG_BK.pdf|here|&do=get]]. |
Line 366: | Line 370: |
Notes to the various sections can be downloaded [[attachment:Media/FLAG_notes.pdf|here|&do=get]]. | Notes to the various sections can be downloaded [[attachment:Media/FLAG_notes.pdf|here|&do=get]]. A reduced version containing only the notes on calculations which are new w.r.t. FLAG 13 is available [[attachment:Media/FLAG_notes_reduced.pdf|here|&do=get]]. <<BR>> <<BR>> This page has been accessed <<Hits>> times. |
FLAG Review 2019
|
The version of the FLAG 19 review as of December 2020 is accessible here. It contains updated sections as follows:
|Vud| and |Vus|: updated December 2020
B-meson decay constants, mixing parameters, and form factors: updated December 2020
The original 2019 edition of the FLAG review can be downloaded here. The version dated March 4, 2020 is the one accepted for publication in EPJC. The EPJC version can be obtained from here.
The separate sections can be downloaded as separate pdf-files following the links in the table of contents below, or via the menu in the sidebar. Clicking on the FLAG logo in the upper left corner links back to this main page.
The latest figures can be downloaded in eps, pdf and png format, together with a bib-file containing the bibtex-entries for the calculations which contribute to the FLAG averages and estimates. The downloads are available via the menu in the sidebar.
In the notes we compile detailed information on the simulations used to calculate the quantities discussed in the review. Here we provide the complete tables, in contrast to the paper version of the review which contains this information only for results that have appeared since FLAG 16.
The original complete 2015/2016 review is still accessible from EPJC. The 2016/2017 updates are available from here. The 2013/2014 review is accessible here or from EPJC.
Contents
Introduction
The introduction with the updated summary tables can be downloaded here.
We review lattice results related to pion, kaon, D-meson, B-meson, and nucleon physics with the aim of making them easily accessible to the nuclear and particle physics communities. More specifically, we report on the determination of the light-quark masses, the form factor f+(0) arising in the semileptonic K→π transition at zero momentum transfer, as well as the decay constant ratio fK/fπ and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)L×SU(2)R and SU(3)L×SU(3)R Chiral Perturbation Theory. We review the determination of the BK parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. For the heavy-quark sector, we provide results for mc and mb as well as those for D- and B-meson decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. We review the status of lattice determinations of the strong coupling constant αs. Finally, in this review we have added a new section reviewing results for nucleon matrix elements of the axial, scalar and tensor bilinears, both isovector and flavor diagonal.
Flavour physics provides an important opportunity for exploring the limits of the Standard Model of particle physics and for constraining possible extensions that go beyond it. As the LHC explores a new energy frontier and as experiments continue to extend the precision frontier, the importance of flavour physics will grow, both in terms of searches for signatures of new physics through precision measurements and in terms of attempts to construct the theoretical framework behind direct discoveries of new particles. Crucial to such searches for new physics is the ability to quantify strong-interaction effects. Large-scale numerical simulations of lattice QCD allow for the computation of these effects from first principles. The scope of the Flavour Lattice Averaging Group (FLAG) is to review the current status of lattice results for a variety of physical quantities that are important for flavour physics. Set up in November 2007, it comprises experts in Lattice Field Theory, Chiral Perturbation Theory and Standard Model phenomenology. Our aim is to provide an answer to the frequently posed question What is currently the best lattice value for a particular quantity?" in a way that is readily accessible to those who are not expert in lattice methods. This is generally not an easy question to answer; different collaborations use different lattice actions (discretizations of QCD) with a variety of lattice spacings and volumes, and with a range of masses for the u- and d-quarks. Not only are the systematic errors different, but also the methodology used to estimate these uncertainties varies between collaborations. In the present work, we summarize the main features of each of the calculations and provide a framework for judging and combining the different results. Sometimes it is a single result that provides the best" value; more often it is a combination of results from different collaborations. Indeed, the consistency of values obtained using different formulations adds significantly to our confidence in the results.
The first three editions of the FLAG review were made public in 2010 [1], 2013 [2], and 2016 [3] (and will be referred to as FLAG 10, FLAG 13 and FLAG 16, respectively). The third edition reviewed results related to both light (u-, d- and s-), and heavy (c- and b-) flavours. The quantities related to pion and kaon physics were light-quark masses, the form factor f+(0) arising in semileptonic K→π transitions (evaluated at zero momentum transfer), the decay constants fK and fπ, the BK parameter from neutral kaon mixing, and the kaon mixing matrix elements of new operators that arise in theories of physics beyond the Standard Model. Their implications for the CKM matrix elements Vus and Vud were also discussed. Furthermore, results were reported for some of the low-energy constants of $SU(2)_L \times SU(2)_RandSU(3)_L \times SU(3)_R$ Chiral Perturbation Theory. The quantities related to D- and B-meson physics that were reviewed were the masses of the charm and bottom quarks together with the decay constants, form factors, and mixing parameters of B- and D-mesons. These are the heavy-light quantities most relevant to the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Last but not least, the current status of lattice results on the QCD coupling αs was reviewed.
In the present paper we provide updated results for all the above-mentioned quantities, but also extend the scope of the review by adding a section on nucleon matrix elements. This presents results for matrix elements of flavor non-singlet and singlet bilinear operators, including the nucleon axial charge gA and the nucleon sigma terms. These results are relevant for constraining Vud, for searches for new physics in neutron decays and other processes, and for dark matter searches. In addition, the section on up and down quark masses has been largely rewritten, replacing previous estimates for mu, md, and the mass ratios R and Q that were largely phenomenological with those from lattice QED+QCD calculations. We have also updated the discussion of the phenomenology of isospin-breaking effects in the light meson sector, and their relation to quark masses, with a lattice-centric discussion. A short review of QED in lattice-QCD simulations is also provided, including a discussion of ambiguities arising when attempting to define physical quantities in pure QCD.
Our main results are collected in Tables 1, 2 and 3. As is clear from the tables, for most quantities there are results from ensembles with different values for Nf. In most cases, there is reasonable agreement among results with Nf=2, 2+1, and 2+1+1. As precision increases, we may some day be able to distinguish among the different values of Nf, in which case, presumably 2+1+1 would be the most realistic. (If isospin violation is critical, then 1+1+1 or 1+1+1+1 might be desired.) At present, for some quantities the errors in the Nf=2+1 results are smaller than those with Nf=2+1+1 (e.g., for mc), while for others the relative size of the errors is reversed. Our suggestion to those using the averages is to take whichever of the Nf=2+1 or Nf=2+1+1 results has the smaller error. We do not recommend using the Nf=2 results, except for studies of the Nf-dependence of condensates and αs, as these have an uncontrolled systematic error coming from quenching the strange quark.
Our plan is to continue providing FLAG updates, in the form of a peer reviewed paper, roughly on a triennial basis. This effort is supplemented by our more frequently updated website (this page), where figures as well as pdf-files for the individual sections can be downloaded. The papers reviewed in the present edition have appeared before the closing date 30 September 2018. [4]
FLAG composition, guidelines and rules
Citation policy
General issues
References
G. Colangelo et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C71 (2011) 1695, arXiv:1011.4408 (1 2)
S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C74 (2014) 2890, arXiv:1310.8555. (1 2)
S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C77 (2017) 112, arXiv:1607.00299. (1 2 3)
Working groups were given the option of including papers submitted to arXiv.org before the closing date but published after this date. This flexibility allows this review to be up-to-date at the time of submission. Three papers of this type were included: Ref. [5] in Secs. 7 and 8, and Refs. [6] and [7] in Sec. 10. (1)
The WG on semileptonic D and B decays has currently four members, but only three of them belong to lattice collaborations. (1)
The NME WG, new in this addition of the FLAG review, has been formed with four members (all members of lattice collaborations) rather than three. This reflects the large amount of work needed to create a section for which some of the systematic errors are substantially different from those described in other sections, and to provide a better representation of relevant collaborations. (1)
We also use terms like “quality criteria”, “rating”, “colour coding” etc. when referring to the classification of results, as described in Sec. 2. (1)
Quality criteria
The section on the quality criteria can be downloaded here.
Quark masses
The section on the quark masses can be downloaded here.
Vud and Vus
The section on Vud and Vus can be downloaded here.
Low-energy constants
The section on the low-energy constants can be downloaded here.
Kaon mixing
The section on the kaon mixing can be downloaded here.
D-meson decay constants and form factors
The section on the D-meson decay constants and form factors can be downloaded here.
B-meson decay constants, mixing parameters, and form factors
The section on the B-meson decay constants, mixing parameters, and form factors can be downloaded here.
The strong coupling αs
The section on the strong coupling αs can be downloaded here.
Nucleon matrix elements
The section on nucleon matrix elements can be downloaded here.
Glossary
The glossary can be downloaded here.
Notes
Notes to the various sections can be downloaded here. A reduced version containing only the notes on calculations which are new w.r.t. FLAG 13 is available here.
This page has been accessed 191435 times.