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6 Kaon mixing

Authors: P. Dimopoulos, G. Herdóıza, R. Mawhinney

The mixing of neutral pseudoscalar mesons plays an important role in the understanding
of the physics of CP violation. In this section we discuss K0−K̄0 oscillations, which probe the
physics of indirect CP violation. Extensive reviews on the subject can be found in Refs. [1–5].
For the most part, we shall focus on kaon mixing in the SM. The case of Beyond-the-Standard-
Model (BSM) contributions is discussed in Sec. 6.3.

6.1 Indirect CP violation and ǫK in the SM

Indirect CP violation arises in KL → ππ transitions through the decay of the CP = +1
component of KL into two pions (which are also in a CP = +1 state). Its measure is defined
as

ǫK =
A[KL → (ππ)I=0]

A[KS → (ππ)I=0]
, (127)

with the final state having total isospin zero. The parameter ǫK may also be expressed in terms
of K0 − K̄0 oscillations. In the Standard Model, ǫK receives contributions from: (i) short-
distance (SD) physics given by ∆S = 2 “box diagrams” involving W± bosons and u, c and t
quarks; (ii) the long-distance (LD) physics from light hadrons contributing to the imaginary
part of the dispersive amplitude M12 used in the two component description of K0 − K̄0

mixing; (iii) the imaginary part of the absorptive amplitude Γ12 from K0 − K̄0 mixing; and
(iv) Im(A0)/Re(A0), where A0 is the K → (ππ)I=0 decay amplitude. The various factors
in this decomposition can vary with phase conventions. In terms of the ∆S = 2 effective
Hamiltonian, H∆S=2

eff , it is common to represent contribution (i) by

Im(MSD
12 ) ≡ 1

2mK
Im[〈K̄0|H∆S=2

eff |K0〉], (128)

and contribution (ii) by ImMLD
12 . Contribution (iii) can be related to Im(A0)/Re(A0) since

(ππ)I=0 states provide the dominant contribution to absorptive part of the integral in Γ12.
Collecting the various pieces yields the following expression for the ǫK factor [4, 6–9]

ǫK = exp(iφǫ) sin(φǫ)

[

Im(MSD
12 )

∆MK
+

Im(MLD
12 )

∆MK
+

Im(A0)

Re(A0)

]

, (129)

where the phase of ǫK is given by

φǫ = arctan
∆MK

∆ΓK/2
. (130)

The quantities ∆MK and ∆ΓK are the mass and decay width differences between long- and
short-lived neutral kaons. The experimentally known values of the above quantities read [10]:

|ǫK | = 2.228(11)× 10−3 , (131)

φǫ = 43.52(5)◦ , (132)

∆MK ≡ MKL
−MKS

= 3.484(6)× 10−12MeV , (133)

∆ΓK ≡ ΓKS
− ΓKL

= 7.3382(33)× 10−12MeV , (134)
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where the latter three measurements have been obtained by imposing CPT symmetry.
We will start by discussing the short-distance effects (i) since they provide the dominant

contribution to ǫK . To lowest order in the electroweak theory, the contribution to the K0−K̄0

oscillations arises from so-called box diagrams, in which two W bosons and two “up-type”
quarks (i.e., up, charm, top) are exchanged between the constituent down and strange quarks
of the K mesons. The loop integration of the box diagrams can be performed exactly. In the
limit of vanishing external momenta and external quark masses, the result can be identified
with an effective four-fermion interaction, expressed in terms of the effective Hamiltonian

H∆S=2
eff =

G2
FM

2
W

16π2
F0Q∆S=2 + h.c. . (135)

In this expression, GF is the Fermi coupling, MW the W -boson mass, and

Q∆S=2 = [s̄γµ(1− γ5)d] [s̄γµ(1− γ5)d] ≡ OVV+AA −OVA+AV , (136)

is a dimension-six, four-fermion operator. The function F0 is given by

F0 = λ2
cS0(xc) + λ2

tS0(xt) + 2λcλtS0(xc, xt) , (137)

where λa = V ∗
asVad, and a = c , t denotes a flavour index. The quantities S0(xc), S0(xt) and

S0(xc, xt) with xc = m2
c/M

2
W, xt = m2

t /M
2
W are the Inami-Lim functions [11], which express

the basic electroweak loop contributions without QCD corrections. The contribution of the
up quark, which is taken to be massless in this approach, has been taken into account by
imposing the unitarity constraint λu + λc + λt = 0.

When strong interactions are included, ∆S = 2 transitions can no longer be discussed at
the quark level. Instead, the effective Hamiltonian must be considered between mesonic initial
and final states. Since the strong coupling is large at typical hadronic scales, the resulting
weak matrix element cannot be calculated in perturbation theory. The operator product
expansion (OPE) does, however, factorize long- and short- distance effects. For energy scales
below the charm threshold, the K0 − K̄0 transition amplitude of the effective Hamiltonian
can be expressed as

〈K̄0|H∆S=2
eff |K0〉 =

G2
FM

2
W

16π2

[

λ2
cS0(xc)η1 + λ2

tS0(xt)η2 + 2λcλtS0(xc, xt)η3

]

×
(

ḡ(µ)2

4π

)−γ0/(2β0)

exp

{
∫ ḡ(µ)

0
dg

(

γ(g)

β(g)
+

γ0
β0g

)}

〈K̄0|Q∆S=2
R (µ)|K0〉 + h.c. , (138)

where ḡ(µ) and Q∆S=2
R (µ) are the renormalized gauge coupling and four-fermion operator in

some renormalization scheme. The factors η1, η2 and η3 depend on the renormalized coupling
ḡ, evaluated at the various flavour thresholdsmt,mb,mc andMW, as required by the OPE and
RG-running procedure that separate high- and low-energy contributions. Explicit expressions
can be found in Refs. [3] and references therein, except that η1 and η3 have been calculated
to NNLO in Refs. [12] and [13], respectively. We follow the same conventions for the RG
equations as in Ref. [3]. Thus the Callan-Symanzik function and the anomalous dimension
γ(ḡ) of Q∆S=2 are defined by

dḡ

d lnµ
= β(ḡ) ,

dQ∆S=2
R

d lnµ
= −γ(ḡ)Q∆S=2

R , (139)
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with perturbative expansions

β(g) = −β0
g3

(4π)2
− β1

g5

(4π)4
− · · · , (140)

γ(g) = γ0
g2

(4π)2
+ γ1

g4

(4π)4
+ · · · .

We stress that β0, β1 and γ0 are universal, i.e., scheme independent. As for K0 − K̄0 mixing,
this is usually considered in the naive dimensional regularization (NDR) scheme of MS, and
below we specify the perturbative coefficient γ1 in that scheme:

β0 =

{

11

3
N − 2

3
Nf

}

, β1 =

{

34

3
N2 −Nf

(

13

3
N − 1

N

)}

, (141)

γ0 =
6(N − 1)

N
, γ1 =

N − 1

2N

{

−21 +
57

N
− 19

3
N +

4

3
Nf

}

.

Note that for QCD the above expressions must be evaluated for N = 3 colours, while Nf

denotes the number of active quark flavours. As already stated, Eq. (138) is valid at scales
below the charm threshold, after all heavier flavours have been integrated out, i.e., Nf = 3.

In Eq. (138), the terms proportional to η1, η2 and η3, multiplied by the contributions
containing ḡ(µ)2, correspond to the Wilson coefficient of the OPE, computed in perturbation
theory. Its dependence on the renormalization scheme and scale µ is canceled by that of the
weak matrix element 〈K̄0|Q∆S=2

R (µ)|K0〉. The latter corresponds to the long-distance effects
of the effective Hamiltonian and must be computed nonperturbatively. For historical, as well
as technical reasons, it is convenient to express it in terms of the B-parameter BK , defined
as

BK(µ) =

〈

K̄0
∣

∣Q∆S=2
R (µ)

∣

∣K0
〉

8
3f

2
Km2

K

. (142)

The four-quark operator Q∆S=2(µ) is renormalized at scale µ in some regularization scheme,
for instance, NDR-MS. Assuming that BK(µ) and the anomalous dimension γ(g) are both
known in that scheme, the renormalization group independent (RGI) B-parameter B̂K is
related to BK(µ) by the exact formula

B̂K =

(

ḡ(µ)2

4π

)−γ0/(2β0)

exp

{
∫ ḡ(µ)

0
dg

(

γ(g)

β(g)
+

γ0
β0g

)}

BK(µ) . (143)

At NLO in perturbation theory the above reduces to

B̂K =

(

ḡ(µ)2

4π

)−γ0/(2β0){

1 +
ḡ(µ)2

(4π)2

[

β1γ0 − β0γ1
2β2

0

]}

BK(µ) . (144)

To this order, this is the scale-independent product of all µ-dependent quantities in Eq. (138).
Lattice-QCD calculations provide results for BK(µ). These results are, however, usually

obtained in intermediate schemes other than the continuum MS scheme used to calculate
the Wilson coefficients appearing in Eq. (138). Examples of intermediate schemes are the
RI/MOM scheme [14] (also dubbed the “Rome-Southampton method”) and the Schrödinger
functional (SF) scheme [15]. These schemes are used as they allow a nonperturbative renor-
malization of the four-fermion operator, using an auxiliary lattice simulation. This allows
BK(µ) to be calculated with percent-level accuracy, as described below.
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In order to make contact with phenomenology, however, and in particular to use the
results presented above, one must convert from the intermediate scheme to the MS scheme
or to the RGI quantity B̂K . This conversion relies on one or 2-loop perturbative matching
calculations, the truncation errors in which are, for many recent calculations, the dominant
source of error in B̂K (see, for instance, Refs. [16–20]). While this scheme-conversion error
is not, strictly speaking, an error of the lattice calculation itself, it must be included in
results for the quantities of phenomenological interest, namely, BK(MS, 2GeV) and B̂K .
Incidentally, we remark that this truncation error is estimated in different ways and that
its relative contribution to the total error can considerably differ among the various lattice
calculations. We note that this error can be minimized by matching between the intermediate
scheme and MS at as large a scale µ as possible (so that the coupling which determines the
rate of convergence is minimized). Recent calculations have pushed the matching µ up to
the range 3 − 3.5GeV. This is possible because of the use of nonperturbative RG running
determined on the lattice [17, 19, 21]. The Schrödinger functional offers the possibility to
run nonperturbatively to scales µ ∼ MW where the truncation error can be safely neglected.
However, so far this has been applied only for two flavours for BK in Ref. [22] and for the
case of the BSM bag parameters in Ref. [23], see more details in Sec. 6.3.

Perturbative truncation errors in Eq. (138) also affect the Wilson coefficients η1, η2 and η3.
It turns out that the largest uncertainty arises from the charm quark contribution η1 =
1.87(76) [12]. Although it is now calculated at NNLO, the series shows poor convergence.
The net effect from the uncertainty on η1 on the amplitude in Eq. (138) is larger than that
of present lattice calculations of BK .

We will now proceed to discuss the remaining contributions to ǫK in Eq. (129). An
analytical estimate of the leading contribution from ImMLD

12 based on χPT, shows that it
is approximately proportional to ξ ≡ Im(A0)/Re(A0) so that Eq. (129) can be written as
follows [8, 9]

ǫK = exp(iφǫ) sin(φǫ)
[ Im(MSD

12 )

∆MK
+ ρ ξ

]

, (145)

where the deviation of ρ from one parameterizes the long-distance effects in ImM12.
An estimate of ξ has been obtained from a direct evaluation of the ratio of amplitudes

Im(A0)/Re(A0) where Im(A0) is determined from a lattice-QCD computation [24] at one
value of the lattice spacing, while Re(A0) ≃ |A0| and the value |A0| = 3.320(2) × 10−7 GeV
are used based on the relevant experimental input [10] from the decay to two pions. This
leads to a result for ξ with a rather large relative error,

ξ = −0.6(5) · 10−4. (146)

A more precise estimate can be been obtained through a lattice-QCD computation of the
ratio of amplitudes Im(A2)/Re(A2) [25] where the continuum limit result is based on data
at two values of the lattice spacing; A2 denotes the ∆I = 3/2 K → ππ decay amplitude.
For the computation of ξ, the experimental values of Re(ǫ′/ǫ), |ǫK | and ω = Re(A2)/Re(A0)
have been used. The result for ξ reads

ξ = −1.6(2) · 10−4. (147)

A phenomenological estimate can also be obtained from the relationship of ξ to Re(ǫ′/ǫ),
using the experimental value of the latter and further assumptions concerning the estimate
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of hadronic contributions. The corresponding value of ξ reads [8, 9]

ξ = −6.0(1.5) · 10−2
√
2 |ǫK | = −1.9(5) · 10−4. (148)

We note that the use of the experimental value for Re(ǫ′/ǫ) is based on the assumption that
it is free from New Physics contributions. The value of ξ can then be combined with a χPT-
based estimate for the long-range contribution, ρ = 0.6(3) [9]. Overall, the combination ρξ
appearing in Eq. (145) leads to a suppression of the SM prediction of |ǫK | by about 3(2)%
relative to the experimental measurement of |ǫK | given in Eq. (131), regardless of whether the
phenomenological estimate of ξ [see Eq. (148)] or the most precise lattice result [see Eq. (147)]
are used. The uncertainty in the suppression factor is dominated by the error on ρ. Although
this is a small correction, we note that its contribution to the error of ǫK is larger than that
arising from the value of BK reported below.

Efforts are under way to compute the long-distance contributions to ǫK [26] and to the
KL − KS mass difference in lattice QCD [27–30]. However, the results are not yet precise
enough to improve the accuracy in the determination of the parameter ρ.

The lattice-QCD study of K → ππ decays provides crucial input to the SM prediction of
ǫK . Besides the RBC-UKQCD collaboration programme [24, 25] using domain-wall fermions,
an approach based on improved Wilson fermions [31, 32] has presented a determination of the
K → ππ decay amplitudes, A0 and A2, at unphysical quark masses. A first proposal aiming
at the inclusion of electromagnetism in lattice-QCD calculations of these decays was reported
in Ref. [33]. For an ongoing analysis of the scaling with the number of colours of K → ππ
decay amplitudes using lattice-QCD computations, we refer to Refs. [34, 35].

Finally, we notice that ǫK receives a contribution from |Vcb| through the λt parameter in
Eq. (137). The present uncertainty on |Vcb| has a significant impact on the error of ǫK [see,
e.g., Ref. [36] and a recent update [37]].

6.2 Lattice computation of BK

Lattice calculations of BK are affected by the same systematic effects discussed in previous
sections. However, the issue of renormalization merits special attention. The reason is that
the multiplicative renormalizability of the relevant operator Q∆S=2 is lost once the regular-
ized QCD action ceases to be invariant under chiral transformations. For Wilson fermions,
Q∆S=2 mixes with four additional dimension-six operators, which belong to different repre-
sentations of the chiral group, with mixing coefficients that are finite functions of the gauge
coupling. This complicated renormalization pattern was identified as the main source of sys-
tematic error in earlier, mostly quenched calculations of BK with Wilson quarks. It can be
bypassed via the implementation of specifically designed methods, which are either based on
Ward identities [38] or on a modification of the Wilson quark action, known as twisted mass
QCD [39–41].

An advantage of staggered fermions is the presence of a remnant U(1) chiral symme-
try. However, at nonvanishing lattice spacing, the symmetry among the extra unphysical
degrees of freedom (tastes) is broken. As a result, mixing with other dimension-six operators
cannot be avoided in the staggered formulation, which complicates the determination of the
B-parameter. In general, taste conserving mixings are implemented directly in the lattice com-
putation of the matrix element. The effects of the broken taste symmetry are usually treated
through an effective field theory, staggered Chiral Perturbation Theory (SχPT) [42, 43], pa-
rameterizing the quark-mass and lattice-spacing dependences.
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Fermionic lattice actions based on the Ginsparg-Wilson relation [44] are invariant under
the chiral group, and hence four-quark operators such as Q∆S=2 renormalize multiplicatively.
However, depending on the particular formulation of Ginsparg-Wilson fermions, residual chi-
ral symmetry breaking effects may be present in actual calculations. For instance, in the case
of domain-wall fermions, the finiteness of the extra 5th dimension implies that the decoupling
of modes with different chirality is not exact, which produces a residual nonzero quark mass
in the chiral limit. Furthermore, whether a significant mixing with dimension-six operators
of different chirality is induced must be investigated on a case-by-case basis.

The only existing lattice-QCD calculation of BK with Nf = 2+1+1 dynamical quarks [45]
was reviewed in the FLAG 16 report. Considering that no direct evaluation of the size of the
excess of charm quark effects included in Nf = 2 + 1 + 1 computations of BK has appeared
since then, we wish to reiterate a discussion about a few related conceptual issues.

As described in Sec. 6.1, kaon mixing is expressed in terms of an effective four-quark
interaction Q∆S=2, considered below the charm threshold. When the matrix element of
Q∆S=2 is evaluated in a theory that contains a dynamical charm quark, the resulting estimate
for BK must then be matched to the three-flavour theory that underlies the effective four-
quark interaction.1 In general, the matching of 2+1-flavour QCD with the theory containing
2 + 1+ 1 flavours of sea quarks below the charm threshold can be accomplished by adjusting
the coupling and quark masses of the Nf = 2 + 1 theory so that the two theories match at
energies E < mc. The corrections associated with this matching are of order (E/mc)

2, since
the subleading operators have dimension eight [46].

When the kaon mixing amplitude is considered, the matching also involves the relation
between the relevant box graphs and the effective four-quark operator. In this case, corrections
of order (E/mc)

2 arise not only from the charm quarks in the sea, but also from the valence
sector, since the charm quark propagates in the box diagrams. We note that the original
derivation of the effective four-quark interaction is valid up to corrections of order (E/mc)

2.
The kaon mixing amplitudes evaluated in the Nf = 2 + 1 and 2 + 1 + 1 theories are thus
subject to corrections of the same order in E/mc as the derivation of the conventional four-
quark interaction.

Regarding perturbative QCD corrections at the scale of the charm quark mass on the
amplitude in Eq. (138), the uncertainty on η1 and η3 factors is of O(αs(mc)

3) [12, 13], while
that on η2 is of O(αs(mc)

2) [47]. On the other hand, a naive power counting argument
suggests that the corrections of order (E/mc)

2 due to dynamical charm-quark effects in the
matching of the amplitudes are suppressed by powers of αs(mc) and by a factor of 1/Nc. It
is therefore essential that any forthcoming calculation of BK with Nf = 2 + 1 + 1 flavours
addresses properly the size of these residual dynamical charm effects in a quantitative way.

Another issue in this context is how the lattice scale and the physical values of the quark
masses are determined in the 2 + 1 and 2 + 1 + 1 flavour theories. Here it is important
to consider in which way the quantities used to fix the bare parameters are affected by a
dynamical charm quark. Apart from a brief discussion in Ref. [45], these issues have not yet
been directly addressed in the literature. 2 Given the hierarchy of scales between the charm
quark mass and that of BK , we expect these errors to be modest, but a more quantitative
understanding is needed as statistical errors on BK are reduced. Within this review we will

1We thank Martin Lüscher for an interesting discussion on this issue.
2The nonperturbative studies with two heavy mass-degenerate quarks in Refs. [48, 49] indicate that dy-

namical charm-quark effects in low-energy hadronic observables are considerably smaller than the expectation
from a naive power counting in terms of αs(mc).
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not discuss this issue further. However, we wish to point out that the present discussion also
applies to Nf = 2+ 1+ 1 computations of the kaon BSM B-parameters discussed in Sec. 6.3.

A compilation of results with Nf = 2, 2 + 1 and 2 + 1 + 1 flavours of dynamical quarks
is shown in Tabs. 27 and 28, as well as Fig. 18. An overview of the quality of systematic
error studies is represented by the colour coded entries in Tabs. 27 and 28. In Appendix B.4
we gather the simulation details and results that have appeared since the previous FLAG
review [50]. The values of the most relevant lattice parameters, and comparative tables on
the various estimates of systematic errors are also collected.

Some of the groups whose results are listed in Tabs. 27 and 28 do not quote results for
both BK(MS, 2GeV)—which we denote by the shorthand BK from now on—and B̂K . This
concerns Refs. [51, 52] for Nf = 2, Refs.[16, 17, 19, 20] for 2 + 1 and Ref. [45] for 2 + 1 + 1
flavours. In these cases we perform the conversion ourselves by evaluating the proportionality
factor in Eq. (144) using perturbation theory at NLO at a renormalization scale µ = 2GeV.

For Nf = 2 + 1, by using the world average value Λ
(3)

MS
= 332MeV from PDG [10] and the

4-loop β-function we obtain, B̂K/BK = 1.369 in the three-flavour theory. Had we used the
5-loop β-function we would get B̂K/BK = 1.373. If we use instead the average lattice results

from Sec. 9 of the present FLAG report, Λ
(3)

MS
= 343MeV, together with the four and 5-loop

β-function, we obtain B̂K/BK = 1.365 and B̂K/BK = 1.369, respectively. In FLAG 16, we
used B̂K/BK = 1.369 based on the 2014 edition of the PDG [53]. The relative deviations
among these various estimates is below the 3 permille level and amounts to a tiny fraction
of the uncertainty on the average value of the B-parameter. We have therefore used in this
edition the value, B̂K/BK = 1.369, which was also used in FLAG 16. The same value for the
conversion factor has also been applied to the result computed in QCD with Nf = 2 + 1 + 1
flavours of dynamical quarks [45].

In two-flavour QCD one can insert into the NLO expressions for αs the estimate Λ
(2)

MS
=

330MeV, which is the average value for Nf = 2 obtained in Sec. 9, and get B̂K/BK = 1.365

and B̂K/BK = 1.368 for running with four and 5-loop β-function, respectively. We again
note that the difference between the conversion factors for Nf = 2 and Nf = 2 + 1 will
produce a negligible ambiguity, which, in any case, is well below the overall uncertainties in
Refs. [51, 52]. We have therefore chosen to apply the conversion factor of 1.369 not only to
results obtained for Nf = 2 + 1 flavours but also to the two-flavour theory (in cases where

only one of B̂K and BK are quoted). We have indicated explicitly in Tab. 28 in which way the
conversion factor 1.369 has been applied to the results of Refs. [51, 52]. We wish to encourage
authors to provide both B̂K and BK together with the values of the parameters appearing in
the perturbative running.

We discuss here one recent result for the kaon B-parameter reported by the RBC/UKQCD
collaboration, RBC/UKQCD16 [54], where Nf = 2+1 dynamical quarks have been employed.
For a detailed description of previous calculations—and in particular those considered in the
computation of the average values—we refer the reader to the FLAG 16 [50] and FLAG 13 [55]
reports.
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BK(MS, 2GeV) B̂K

ETM 15 [45] 2+1+1 A ⋆ ◦ ◦ ⋆ a 0.524(13)(12) 0.717(18)(16)1

RBC/UKQCD 16 [54] 2+1 A ◦ ◦ ◦ ⋆ b 0.543(9)(13)2 0.744(13)(18)3

SWME 15A [20] 2+1 A ⋆ ◦ ⋆ ◦‡
− 0.537(4)(26) 0.735(5)(36)4

RBC/UKQCD 14B [19] 2+1 A ⋆ ⋆ ◦ ⋆ b 0.5478(18)(110)2 0.7499(24)(150)

SWME 14 [18] 2+1 A ⋆ ◦ ⋆ ◦‡
− 0.5388(34)(266) 0.7379(47)(365)

SWME 13A [56] 2+1 A ⋆ ◦ ⋆ ◦‡
− 0.537(7)(24) 0.735(10)(33)

SWME 13 [57] 2+1 C ⋆ ◦ ⋆ ◦‡
− 0.539(3)(25) 0.738(5)(34)

RBC/UKQCD 12A [17] 2+1 A ◦ ⋆ ◦ ⋆ b 0.554(8)(14)2 0.758(11)(19)

Laiho 11 [16] 2+1 C ⋆ ◦ ◦ ⋆ − 0.5572(28)(150) 0.7628(38)(205)4

SWME 11A [58] 2+1 A ⋆ ◦ ◦ ◦‡
− 0.531(3)(27) 0.727(4)(38)

BMW 11 [21] 2+1 A ⋆ ⋆ ⋆ ⋆ c 0.5644(59)(58) 0.7727(81)(84)

RBC/UKQCD 10B [59] 2+1 A ◦ ◦ ⋆ ⋆ d 0.549(5)(26) 0.749(7)(26)

SWME 10 [60] 2+1 A ⋆ ◦ ◦ ◦ − 0.529(9)(32) 0.724(12)(43)

Aubin 09 [61] 2+1 A ◦ ◦ ◦ ⋆ − 0.527(6)(21) 0.724(8)(29)

‡ The renormalization is performed using perturbation theory at one loop, with a conservative estimate
of the uncertainty.

a BK is renormalized nonperturbatively at scales 1/a ∼ 2.2 − 3.3GeV in the Nf = 4 RI/MOM scheme
using two different lattice momentum scale intervals, the first around 1/a while the second around
3.5 GeV. The impact of the two ways to the final result is taken into account in the error budget.
Conversion to MS is at 1-loop at 3 GeV.

b BK is renormalized nonperturbatively at a scale of 1.4 GeV in two RI/SMOM schemes for Nf = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. Conversion to MS is at
1-loop order at 3 GeV.

c BK is renormalized and run nonperturbatively to a scale of 3.5GeV in the RI/MOM scheme. At the
same scale conversion at one loop to MS is applied. Nonperturbative and NLO perturbative running
agrees down to scales of 1.8GeV within statistical uncertainties of about 2%.

d BK is renormalized nonperturbatively at a scale of 2GeV in two RI/SMOM schemes for Nf = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. Conversion to MS is at
1-loop order at 3 GeV.

1 BK(MS, 2GeV) and B̂K are related using the conversion factor 1.369, i.e., the one obtained with
Nf = 2 + 1.

2 BK(MS, 2GeV) is obtained from the estimate for B̂K using the conversion factor 1.369.
3 B̂K is obtained from BK(MS, 3GeV) using the conversion factor employed in Ref. [19].
4 B̂K is obtained from the estimate for BK(MS, 2GeV) using the conversion factor 1.369.

Table 27: Results for the kaon B-parameter in QCD with Nf = 2 + 1 + 1 and Nf = 2 + 1
dynamical flavours, together with a summary of systematic errors. Any available information
about nonperturbative running is indicated in the column “running”, with details given at
the bottom of the table.
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BK(MS, 2GeV) B̂K

ETM 12D [52] 2 A ⋆ ◦ ◦ ⋆ e 0.531(16)(9) 0.727(22)(12)1

ETM 10A [51] 2 A ⋆ ◦ ◦ ⋆ f 0.533(18)(12)1 0.729(25)(17)

e BK is renormalized nonperturbatively at scales 1/a ∼ 2− 3.7GeV in the Nf = 2 RI/MOM scheme. In
this scheme, nonperturbative and NLO perturbative running are shown to agree from 4 GeV down to
2 GeV to better than 3% [51, 62].

f BK is renormalized nonperturbatively at scales 1/a ∼ 2 − 3GeV in the Nf = 2 RI/MOM scheme. In
this scheme, nonperturbative and NLO perturbative running are shown to agree from 4 GeV down to
2 GeV to better than 3% [51, 62].

1 BK(MS, 2GeV) and B̂K are related using the conversion factor 1.369, i.e., the one obtained with Nf =
2 + 1.

Table 28: Results for the kaon B-parameter in QCD with Nf = 2 dynamical flavours, to-
gether with a summary of systematic errors. Any available information about nonperturbative
running is indicated in the column “running”, with details given at the bottom of the table.

In Ref. [54], RBC/UKQCD presented a determination of BK obtained as part of their
study of kaon mixing in extensions of the SM. In this calculation two values of the lattice
spacing, a ≃ 0.11 and 0.08 fm, are used, employing ensembles generated using the Iwasaki
gauge action and the Shamir domain-wall fermionic action. The lattice volumes are 243×64×
16 for the coarse and 323×64×16 for the fine lattice spacing. The lowest simulated values for
the pseudoscalar mass are about 340 MeV and 300 MeV, respectively. The renormalization
of four-quark operators was performed nonperturbatively in two RI-SMOM schemes, namely,
(/q, /q) and (γµ, γµ), where the latter was used for the final estimate of BK . While the procedure
to determineBK is very similar to RBC/UKQCD14B, the calculation in RBC/UKQCD16 [54]
is based only on a subset of the ensembles studied in Ref. [19]. Therefore, the result for BK

reported in Ref. [54] can neither be considered an update of RBC/UKQCD14B, nor an
independent new result.

We now describe our procedure for obtaining global averages. The rules of Sec. 2.1 stip-
ulate that results free of red tags and published in a refereed journal may enter an average.
Papers that at the time of writing are still unpublished but are obvious updates of earlier
published results can also be taken into account.

There is only one result for Nf = 2 + 1 + 1, computed by the ETM collaboration [45].
Since it is free of red tags, it qualifies as the currently best global estimate, i.e.,

Nf = 2 + 1 + 1 : B̂K = 0.717(18)(16) , BMS
K (2GeV) = 0.524(13)(12) Ref. [45]. (149)

The bulk of results for the kaon B-parameter has been obtained for Nf = 2 + 1. As in
the previous editions of the FLAG review [50, 55] we include the results from SWME [18,
20, 56], despite the fact that nonperturbative information on the renormalization factors
is not available. Instead, the matching factor has been determined in perturbation theory
at one loop, but with a sufficiently conservative error of 4.4%. As described above, the
result in RBC/UKQCD16 [54] cannot be considered an update of the earlier estimate in
RBC/UKQCD14B, and hence it is not included in the FLAG average.
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Thus, forNf = 2+1 our global average is based on the results of BMW11 [21], Laiho 11 [16],
RBC/UKQCD14B [19] and SWME15A [20]. The last three are the latest updates from a
series of calculations by the same collaborations. Our procedure is as follows: in a first step
statistical and systematic errors of each individual result for the RGI B-parameter, B̂K , are
combined in quadrature. Next, a weighted average is computed from the set of results. For
the final error estimate we take correlations between different collaborations into account.
To this end we note that we consider the statistical and finite-volume errors of SWME15A
and Laiho 11 to be correlated, since both groups use the Asqtad ensembles generated by the
MILC collaboration. Laiho 11 and RBC/UKQCD14B both use domain-wall quarks in the
valence sector and also employ similar procedures for the nonperturbative determination of
matching factors. Hence, we treat the quoted renormalization and matching uncertainties by
the two groups as correlated. After constructing the global covariance matrix according to
Schmelling [63], we arrive at

Nf = 2 + 1 : B̂K = 0.7625(97) Refs. [16, 19–21], (150)

with χ2/dof = 0.675. After applying the NLO conversion factor B̂K/BMS
K (2GeV) = 1.369,

this translates into

Nf = 2 + 1 : BMS
K (2GeV) = 0.5570(71) Refs. [16, 19–21]. (151)

Note that the statistical errors of each calculation entering the global average are small enough
to make their results statistically incompatible. It is only because of the relatively large
systematic errors that the weighted average produces a value of O(1) for the reduced χ2.

Passing over to describing the results computed for Nf = 2 flavours, we note that there is
only the set of results published in ETM12D [52] and ETM10A [51] that allow for an extensive
investigation of systematic uncertainties. We identify the result from ETM12D [52], which is
an update of ETM10A, with the currently best global estimate for two-flavour QCD, i.e.,

Nf = 2 : B̂K = 0.727(22)(12), BMS
K (2GeV) = 0.531(16)(19) Ref. [52]. (152)

The result in the MS scheme has been obtained by applying the same conversion factor of
1.369 as in the three-flavour theory.

6.3 Kaon BSM B-parameters

We now report on lattice results concerning the matrix elements of operators that encode
the effects of physics beyond the Standard Model (BSM) to the mixing of neutral kaons. In
this theoretical framework both the SM and BSM contributions add up to reproduce the
experimentally observed value of ǫK . Since BSM contributions involve heavy but unobserved
particles they are short-distance dominated. The effective Hamiltonian for generic ∆S = 2
processes including BSM contributions reads

H∆S=2
eff,BSM =

5
∑

i=1

Ci(µ)Qi(µ), (153)

where Q1 is the four-quark operator of Eq. (136) that gives rise to the SM contribution to
ǫK . In the so-called SUSY basis introduced by Gabbiani et al. [64] the operators Q2, . . . , Q5

10
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Figure 18: Recent unquenched lattice results for the RGI B-parameter B̂K . The grey bands
indicate our global averages described in the text. For Nf = 2+ 1 + 1 and Nf = 2 the global
estimate coincide with the results by ETM12D and ETM10A, respectively.

read 3

Q2 =
(

s̄a(1− γ5)d
a
)(

s̄b(1− γ5)d
b
)

,

Q3 =
(

s̄a(1− γ5)d
b
)(

s̄b(1− γ5)d
a
)

,

Q4 =
(

s̄a(1− γ5)d
a
)(

s̄b(1 + γ5)d
b
)

,

Q5 =
(

s̄a(1− γ5)d
b
)(

s̄b(1 + γ5)d
a
)

, (154)

where a and b denote colour indices. In analogy to the case of BK one then defines the
B-parameters of Q2, . . . , Q5 according to

Bi(µ) =

〈

K̄0 |Qi(µ)|K0
〉

Ni

〈

K̄0 |s̄γ5d| 0
〉

〈0 |s̄γ5d|K0〉 , i = 2, . . . , 5. (155)

The factors {N2, . . . , N5} are given by {−5/3, 1/3, 2, 2/3}, and it is understood that Bi(µ)
is specified in some renormalization scheme, such as MS or a variant of the regularization-
independent momentum subtraction (RI-MOM) scheme.

3Thanks to QCD parity invariance lattice computations for three more dimension-six operators, whose
parity conserving parts coincide with the corresponding parity conserving contributions of the operators Q1, Q2

and Q3, can be ignored.
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The SUSY basis has been adopted in Refs. [45, 52, 54, 65]. Alternatively, one can employ
the chiral basis of Buras, Misiak and Urban [66]. The SWME collaboration prefers the latter
since the anomalous dimension that enters the RG running has been calculated to two loops
in perturbation theory [66]. Results obtained in the chiral basis can be easily converted to
the SUSY basis via

BSUSY
3 = 1

2

(

5Bchiral
2 − 3Bchiral

3

)

. (156)

The remaining B-parameters are the same in both bases. In the following we adopt the SUSY
basis and drop the superscript.

Older quenched results for the BSM B-parameters can be found in Refs. [67–69]. For a
nonlattice approach to get estimates for the BSM B-parameters see Ref. [70].

Estimates for B2, . . . , B5 have been reported for QCD with Nf = 2 (ETM12D [52]),
Nf = 2 + 1 (RBC/UKQCD12E [65], SWME13A [56], SWME14C [71], SWME15A [20],
RBC/UKQCD16 [54, 72]) and Nf = 2 + 1 + 1 (ETM15 [45]) flavours of dynamical quarks.
They are listed and compared in Tab. 29 and Fig. 19. In general one finds that the BSM B-
parameters computed by different collaborations do not show the same level of consistency as
the SM kaon mixing parameterBK discussed previously. Control over systematic uncertainties
(chiral and continuum extrapolations, finite-volume effects) in B2, . . . , B5 is expected to be
at the same level as for BK , as far as the results by ETM12D, ETM15 and SWME15A are
concerned. The calculation by RBC/UKQCD12E has been performed at a single value of the
lattice spacing and a minimum pion mass of 290MeV. Thus, the results do not benefit from
the same improvements regarding control over the chiral and continuum extrapolations as in
the case of BK [19].

The RBC/UKQCD collaboration has recently extended its calculation of BSMB-parameters
[54, 72] for Nf = 2+1, by considering two values of the lattice spacing, a ≃ 0.11 and 0.08 fm,
employing ensembles generated using the Iwasaki gauge action and the Shamir domain-wall
fermionic action. The lattice volumes in the RBC/UKQCD16 calculation are 243 × 64 × 16
for the coarse and 323 × 64 × 16 for the fine lattice spacing, while the lowest simulated val-
ues for the pseudoscalar mass are about 340 MeV and 300 MeV, respectively. As in the
related calculation of BK (RBC/UKQCD 14B [19]) the renormalization of four-quark opera-
tors was performed nonperturbatively in two RI-SMOM schemes, namely, (/q, /q) and (γµ, γµ),
where the latter was used for the final estimates of B2, . . . , B5 quoted in Ref. [54]. By com-
paring the results obtained in the conventional RI-MOM and the two RI-SMOM schemes,
RBC/UKQCD16 report significant discrepancies for B4 and B5 in the MS scheme at the
scale of 3GeV, which amount up to 2.8σ in the case of B5. By contrast, the agreement for
B2 and B3 determined for different intermediate scheme is much better. Based on these find-
ings they claim that these discrepancies are due to uncontrolled systematics coming from the
Goldstone boson pole subtraction procedure that is needed in the RI-MOM scheme, while
pole subtraction effects are much suppressed in RI-SMOM thanks to the fact that the latter
is based on nonexceptional momenta. The RBC/UKQCD collaboration has presented an
ongoing study [73] in which simulations with two values of the lattice spacing at the physical
point and with a third finer lattice spacing at Mπ = 234 MeV are employed in order to obtain
the BSM matrix elements in the continuum limit. Results are still preliminary.

The findings by RBC/UKQCD 16 [54, 72] provide evidence that the nonperturbative
determination of the matching factors depends strongly on the details of the implementation of
the Rome-Southampton method. The use of nonexceptional momentum configurations in the
calculation of the vertex functions produces a significant modification of the renormalization
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factors, which affects the matching between MS and the intermediate momentum subtraction
scheme. This effect is most pronounced in B4 and B5. Furthermore, it can be noticed that the
estimates for B4 and B5 from RBC/UKQCD16 are much closer to those of SWME15A. At the
same time, the results for B2 and B3 obtained by ETM 15, SWME 15A and RBC/UKQCD
16 are in good agreement within errors.
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B2 B3 B4 B5

ETM 15 [45] 2+1+1 A ⋆ ◦ ◦ ⋆ a 0.46(1)(3) 0.79(2)(5) 0.78(2)(4) 0.49(3)(3)

RBC/UKQCD 16 [54] 2+1 A ◦ ◦ ◦ ⋆ b 0.488(7)(17) 0.743(14)(65) 0.920(12)(16) 0.707(8)(44)

SWME 15A [20] 2+1 A ⋆ ◦ ⋆ ◦†
− 0.525(1)(23) 0.773(6)(35) 0.981(3)(62) 0.751(7)(68)

SWME 14C [71] 2+1 C ⋆ ◦ ⋆ ◦†
− 0.525(1)(23) 0.774(6)(64) 0.981(3)(61) 0.748(9)(79)

SWME 13A‡ [56] 2+1 A ⋆ ◦ ⋆ ◦†
− 0.549(3)(28) 0.790(30) 1.033(6)(46) 0.855(6)(43)

RBC/ [65] 2+1 A ¥ ◦ ⋆ ⋆ b 0.43(1)(5) 0.75(2)(9) 0.69(1)(7) 0.47(1)(6)
UKQCD 12E

ETM 12D [52] 2 A ⋆ ◦ ◦ ⋆ c 0.47(2)(1) 0.78(4)(2) 0.76(2)(2) 0.58(2)(2)

† The renormalization is performed using perturbation theory at one loop, with a conservative estimate
of the uncertainty.

a Bi are renormalized nonperturbatively at scales 1/a ∼ 2.2 − 3.3GeV in the Nf = 4 RI/MOM scheme
using two different lattice momentum scale intervals, with values around 1/a for the first and around
3.5 GeV for the second one. The impact of these two ways to the final result is taken into account in
the error budget. Conversion to MS is at one loop at 3 GeV.

b The B-parameters are renormalized nonperturbatively at a scale of 3 GeV.

c Bi are renormalized nonperturbatively at scales 1/a ∼ 2 − 3.7GeV in the Nf = 2 RI/MOM scheme
using two different lattice momentum scale intervals, with values around 1/a for the first and around
3 GeV for the second one.

‡ The computation of B4 and B5 has been revised in Refs. [20] and [71].

Table 29: Results for the BSM B-parameters B2, . . . , B5 in the MS scheme at a reference scale
of 3GeV. Any available information on nonperturbative running is indicated in the column
“running”, with details given at the bottom of the table.
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A nonperturbative computation of the running of the four-fermion operators contributing
to the B2, . . . , B5 parameters has been carried out with two dynamical flavours using the
Schrödinger functional renormalization scheme [23]. Renormalization matrices of the operator
basis are used to build step-scaling functions governing the continuum-limit running between
hadronic and electroweak scales. A comparison to perturbative results using NLO (2-loops)
for the four-fermion operator anomalous dimensions indicates that, at scales of about 3GeV,
nonperturbative effects can induce a sizeable contribution to the running.

A detailed look at the most recent calculations reported in ETM15 [45], SWME15A
[20] and RBC/UKQCD16 [54] reveals that cutoff effects appear to be larger for the BSM
B-parameters compared to BK . Depending on the details of the renormalization procedure
and/or the fit ansatz for the combined chiral and continuum extrapolation, the results ob-
tained at the coarsest lattice spacing differ by 15–30%. At the same time the available range
of lattice spacings is typically much reduced compared to the corresponding calculations of
BK , as can be seen by comparing the quality criteria in Tabs. 27 and 29. Hence, the impact of
the renormalization procedure and the continuum limit on the BSM B-parameters certainly
requires further investigation.

Finally we present our estimates for the BSM B-parameters, quoted in the MS-scheme at
scale 3GeV. For Nf = 2 + 1 our estimate is given by the average between the results from
SWME15A and RBC/UKQCD16, i.e.,

Nf = 2 + 1 : (157)

B2 = 0.502(14), B3 = 0.766(32), B4 = 0.926(19), B5 = 0.720(38), Refs. [20, 54].

For Nf = 2+1+1 and Nf = 2, our estimates coincide with the ones by ETM15 and ETM12D,
respectively, since there is only one computation for each case. Thus we quote

Nf = 2 + 1 + 1 : (158)

B2 = 0.46(1)(3), B3 = 0.79(2)(4), B4 = 0.78(2)(4), B5 = 0.49(3)(3), Ref. [45],

Nf = 2 : (159)

B2 = 0.47(2)(1), B3 = 0.78(4)(2), B4 = 0.76(2)(2), B5 = 0.58(2)(2), Ref. [52].

Based on the above discussion on the effects of employing different intermediate momentum
subtraction schemes in the nonperturbative renormalization of the operators, the discrepancy
for B4 and B5 results between Nf = 2, 2 + 1+ 1 and Nf = 2+ 1 computations should not be
considered an effect associated with the number of dynamical flavours. As a closing remark,
we encourage authors to provide the correlation matrix of the Bi parameters.
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Figure 19: Lattice results for the BSM B-parameters defined in the MS scheme at a reference
scale of 3GeV, see Tab. 29.
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