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6 Kaon mixing

Authors: P. Dimopoulos, X. Feng, G. Herdóıza

The mixing of neutral pseudoscalar mesons plays an important role in the understanding
of the physics of quark-flavour mixing and CP violation. In this section we discuss K0 − K̄0

oscillations, which probe the physics of indirect CP violation. Extensive reviews on this sub-
ject can be found in Refs. [1–6]. With respect to the FLAG 19 report, in the new Sec. 6.2 of
the present edition the reader will find an updated discussion regarding the lattice determi-
nation of the K → ππ decay amplitudes and related quantities. Discussions concerning the
kaon mixing within the Standard Model (SM) and Beyond the Standard Model (BSM) are
presented in Secs. 6.3 and 6.4, respectively. We note that FLAG averages for SM and BSM
bag parameters have not changed with respect to the FLAG 19 report.

6.1 Indirect CP violation and ϵK in the SM

Indirect CP violation arises in KL → ππ transitions through the decay of the CP = +1
component of KL into two pions (which are also in a CP = +1 state). Its measure is defined
as

ϵK =
A[KL → (ππ)I=0]

A[KS → (ππ)I=0]
, (130)

with the final state having total isospin zero. The parameter ϵK may also be expressed in terms
of K0 − K̄0 oscillations. In the Standard Model, ϵK receives contributions from: (i) short-
distance (SD) physics given by ∆S = 2 “box diagrams” involving W± bosons and u, c and t
quarks; (ii) the long-distance (LD) physics from light hadrons contributing to the imaginary
part of the dispersive amplitude M12 used in the two component description of K0 − K̄0

mixing; (iii) the imaginary part of the absorptive amplitude Γ12 from K0 − K̄0 mixing; and
(iv) Im(A0)/Re(A0), where A0 is the K → (ππ)I=0 decay amplitude. The various factors
in this decomposition can vary with phase conventions. In terms of the ∆S = 2 effective
Hamiltonian, H∆S=2

eff , it is common to represent contribution (i) by

Im(MSD
12 ) ≡ 1

2mK
Im[⟨K̄0|H∆S=2

eff |K0⟩], (131)

and contribution (ii) by Im (MLD
12 ). Contribution (iii) can be related to Im(A0)/Re(A0) since

(ππ)I=0 states provide the dominant contribution to absorptive part of the integral in Γ12.
Collecting the various pieces yields the following expression for the ϵK factor [5, 7–10]

ϵK = exp(iϕϵ) sin(ϕϵ)

[
Im(MSD

12 )

∆MK
+

Im(MLD
12 )

∆MK
+

Im(A0)

Re(A0)

]
, (132)

where the phase of ϵK is given by

ϕϵ = arctan
∆MK

∆ΓK/2
. (133)
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The quantities ∆MK and ∆ΓK are the mass and decay width differences between long- and
short-lived neutral kaons. The experimentally known values of the above quantities read [11]:

|ϵK | = 2.228(11)× 10−3 , (134)

ϕϵ = 43.52(5)◦ , (135)

∆MK ≡ MKL
−MKS

= 3.484(6)× 10−12MeV , (136)

∆ΓK ≡ ΓKS
− ΓKL

= 7.3382(33)× 10−12MeV , (137)

where the latter three measurements have been obtained by imposing CPT symmetry.
We will start by discussing the short-distance effects (i) since they provide the dominant

contribution to ϵK . To lowest order in the electroweak theory, the contribution to K0 − K̄0

oscillations arises from the so-called box diagrams, in which two W bosons and two “up-type”
quarks (i.e., up, charm, top) are exchanged between the constituent down and strange quarks
of the K mesons. The loop integration of the box diagrams can be performed exactly. In the
limit of vanishing external momenta and external quark masses, the result can be identified
with an effective four-fermion interaction, expressed in terms of the effective Hamiltonian

H∆S=2
eff =

G2
FM

2
W

16π2
F0Q∆S=2 + h.c. . (138)

In this expression, GF is the Fermi coupling, MW the W -boson mass, and

Q∆S=2 = [s̄γµ(1− γ5)d] [s̄γµ(1− γ5)d] ≡ OVV+AA −OVA+AV , (139)

is a dimension-six, four-fermion operator. The subscripts V and A denote vector (s̄γµd) and
axial-vector (s̄γµγ5d) bilinears, respectively. The function F0 is given by

F0 = λ2
cS0(xc) + λ2

tS0(xt) + 2λcλtS0(xc, xt) , (140)

where λa = V ∗
asVad, and a = c , t denotes a flavour index. The quantities S0(xc), S0(xt) and

S0(xc, xt) with xc = m2
c/M

2
W, xt = m2

t /M
2
W are the Inami-Lim functions [12], which express

the basic electroweak loop contributions without QCD corrections. The contribution of the
up quark, which is taken to be massless in this approach, has been taken into account by
imposing the unitarity constraint λu + λc + λt = 0.

When strong interactions are included, ∆S = 2 transitions can no longer be discussed at
the quark level. Instead, the effective Hamiltonian must be considered between mesonic initial
and final states. Since the strong coupling is large at typical hadronic scales, the resulting
weak matrix element cannot be calculated in perturbation theory. The operator product
expansion (OPE) does, however, factorize long- and short- distance effects. For energy scales
below the charm threshold, the K0 − K̄0 transition amplitude of the effective Hamiltonian
can be expressed as

⟨K̄0|H∆S=2
eff |K0⟩ =

G2
FM

2
W

16π2

[
λ2
cS0(xc)η1 + λ2

tS0(xt)η2 + 2λcλtS0(xc, xt)η3

]
×
(
ḡ(µ)2

4π

)−γ0/(2β0)

exp

{∫ ḡ(µ)

0
dg

(
γ(g)

β(g)
+

γ0
β0g

)}
⟨K̄0|Q∆S=2

R (µ)|K0⟩ + h.c. , (141)

where ḡ(µ) and Q∆S=2
R (µ) are the renormalized gauge coupling and four-fermion operator in

some renormalization scheme. The factors η1, η2 and η3 depend on the renormalized coupling
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ḡ, evaluated at the various flavour thresholds mt,mb,mc and MW, as required by the OPE
and Renormalization-Group (RG) running procedure that separate high- and low-energy con-
tributions. Explicit expressions can be found in Refs. [4] and references therein, except that
η1 and η3 have been calculated to NNLO in Refs. [13] and [14], respectively. We follow the
same conventions for the RG equations as in Ref. [4]. Thus the Callan-Symanzik function
and the anomalous dimension γ(ḡ) of Q∆S=2 are defined by

dḡ

d lnµ
= β(ḡ) ,

dQ∆S=2
R

d lnµ
= −γ(ḡ)Q∆S=2

R , (142)

with perturbative expansions

β(g) = −β0
g3

(4π)2
− β1

g5

(4π)4
− · · · , (143)

γ(g) = γ0
g2

(4π)2
+ γ1

g4

(4π)4
+ · · · .

We stress that β0, β1 and γ0 are universal, i.e., scheme independent. As for K0 − K̄0 mixing,
this is usually considered in the naive dimensional regularization (NDR) scheme of MS, and
below we specify the perturbative coefficient γ1 in that scheme:

β0 =

{
11

3
N − 2

3
Nf

}
, β1 =

{
34

3
N2 −Nf

(
13

3
N − 1

N

)}
, (144)

γ0 =
6(N − 1)

N
, γ1 =

N − 1

2N

{
−21 +

57

N
− 19

3
N +

4

3
Nf

}
.

Note that for QCD the above expressions must be evaluated for N = 3 colours, while Nf

denotes the number of active quark flavours. As already stated, Eq. (141) is valid at scales
below the charm threshold, after all heavier flavours have been integrated out, i.e., Nf = 3.

In Eq. (141), the terms proportional to η1, η2 and η3, multiplied by the contributions
containing ḡ(µ)2, correspond to the Wilson coefficient of the OPE, computed in perturbation
theory. Its dependence on the renormalization scheme and scale µ is canceled by that of the
weak matrix element ⟨K̄0|Q∆S=2

R (µ)|K0⟩. The latter corresponds to the long-distance effects
of the effective Hamiltonian and must be computed nonperturbatively. For historical, as well
as technical reasons, it is convenient to express it in terms of the B-parameter BK , defined
as

BK(µ) =

〈
K̄0

∣∣Q∆S=2
R (µ)

∣∣K0
〉

8
3f

2
Km2

K

. (145)

The four-quark operator Q∆S=2(µ) is renormalized at scale µ in some regularization scheme,
for instance, NDR-MS. Assuming that BK(µ) and the anomalous dimension γ(g) are both
known in that scheme, the renormalization group independent (RGI) B-parameter B̂K is
related to BK(µ) by the exact formula

B̂K =

(
ḡ(µ)2

4π

)−γ0/(2β0)

exp

{∫ ḡ(µ)

0
dg

(
γ(g)

β(g)
+

γ0
β0g

)}
BK(µ) . (146)

At NLO in perturbation theory the above reduces to

B̂K =

(
ḡ(µ)2

4π

)−γ0/(2β0){
1 +

ḡ(µ)2

(4π)2

[
β1γ0 − β0γ1

2β2
0

]}
BK(µ) . (147)
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To this order, this is the scale-independent product of all µ-dependent quantities in Eq. (141).
Lattice-QCD calculations provide results for BK(µ). However, these results are usually

obtained in intermediate schemes other than the continuum MS scheme used to calculate
the Wilson coefficients appearing in Eq. (141). Examples of intermediate schemes are the
RI/MOM scheme [15] (also dubbed the “Rome-Southampton method”) and the Schrödinger
functional (SF) scheme [16]. These schemes are used as they allow a nonperturbative renor-
malization of the four-fermion operator, using an auxiliary lattice simulation. This allows
BK(µ) to be calculated with percent-level accuracy, as described below.

In order to make contact with phenomenology, however, and in particular to use the
results presented above, one must convert from the intermediate scheme to the MS scheme
or to the RGI quantity B̂K . This conversion relies on 1- or 2-loop perturbative matching
calculations, the truncation errors in which are, for many recent calculations, the dominant
source of error in B̂K (see, for instance, Refs. [17–21]). While this scheme-conversion error
is not, strictly speaking, an error of the lattice calculation itself, it must be included in
results for the quantities of phenomenological interest, namely, BK(MS, 2GeV) and B̂K .
Incidentally, we remark that this truncation error is estimated in different ways and that
its relative contribution to the total error can considerably differ among the various lattice
calculations. We note that this error can be minimized by matching between the intermediate
scheme and MS at as large a scale µ as possible (so that the coupling which determines the
rate of convergence is minimized). Recent calculations have pushed the matching µ up to
the range 3 − 3.5GeV. This is possible because of the use of nonperturbative RG running
determined on the lattice [18, 20, 22]. The Schrödinger functional offers the possibility to
run nonperturbatively to scales µ ∼ MW where the truncation error can be safely neglected.
However, so far this has been applied only for two flavours for BK in Ref. [23] and for the
case of the BSM bag parameters in Ref. [24], see more details in Sec. 6.4.

Perturbative truncation errors in Eq. (141) also affect the Wilson coefficients η1, η2 and η3.
It turns out that the largest uncertainty arises from the charm quark contribution η1 =
1.87(76) [13]. Although it is now calculated at NNLO, the series shows poor convergence.
The net effect from the uncertainty on η1 on the amplitude in Eq. (141) is larger than that
of present lattice calculations of BK . Exploiting an idea presented in Ref. [25], it has been
recently shown in Ref. [26] that, by using the u− t instead of the usual c− t unitarity in the
ϵK computation, the perturbative uncertainties associated with residual short-distance quark
contributions can be reduced.

We will now proceed to discuss the remaining contributions to ϵK in Eq. (132). An
analytical estimate of the leading contribution from Im(MLD

12 ) based on χPT, shows that it
is approximately proportional to ξ ≡ Im(A0)/Re(A0) so that Eq. (132) can be written as
follows [9, 10]

ϵK = exp(iϕϵ) sin(ϕϵ)
[ Im(MSD

12 )

∆MK
+ ρ ξ

]
, (148)

where the deviation of ρ from one parameterizes the long-distance effects in Im(M12).
In order to facilitate the subsequent discussions about the status of the lattice studies of

K → ππ and of the current estimates of ξ, we proceed by providing a brief account of the
parameter ϵ′ that describes direct CP-violation in the kaon sector. The definition of ϵ′ is given
by:

ϵ′ ≡ 1√
2

A[KS → (ππ)I=2]

A[KS → (ππ)I=0]

(
A[KL → (ππ)I=2]

A[KS → (ππ)I=2]
− A[KL → (ππ)I=0]

A[KS → (ππ)I=0]

)
. (149)
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By selecting appropriate phase conventions for the mixing parameters between K0 and K̄0

CP-eigenstates (see e.g. Ref. [2] for further details), the expression of ϵ′ can be expressed in
terms of the real and imaginary parts of the isospin amplitudes, as follows

ϵ′ =
iω ei(δ2−δ0)

√
2

[ Im(A2)

Re(A2)
− ξ

]
, (150)

where ω = Re(A2)/Re(A0), A2 denotes the ∆I = 3/2 K → ππ decay amplitude, and δI
denotes the strong scattering phase shifts in the corresponding, I = 0, 2, K → (ππ)I decays.
Given that the phase, ϕ′

ϵ = δ2 − δ0 + π/2 = 42.3(1.5)◦ [11] is nearly equal to ϕϵ in Eq. (135),
the ratio of parameters characterizing the direct and indirect CP-violation in the kaon sector
can be approximated in the following way,

ϵ′/ϵ ≈ Re(ϵ′/ϵ) =
ω√
2 |ϵK |

[ Im(A2)

Re(A2)
− ξ

]
, (151)

where on the left hand side we have set ϵ ≡ ϵK . The experimentally measured value reads [11],

Re(ϵ′/ϵ) = 16.6(2.3)× 10−4 . (152)

We remark that isospin breaking and electromagnetic effects (see Refs. [27, 28], and the
discussion in Ref. [3]) introduce additional correction terms into Eq. (151).

6.2 Lattice-QCD studies of the K → (ππ)I decay amplitudes, ξ and ϵ′/ϵ

As a preamble to this section, it should be noted that the study of K → ππ decay ampli-
tudes requires the development of computational strategies that are at the forefront of lattice
QCD techniques. These studies represent a significant advance in the study of kaon physics.
However, at present, they have not yet reached the same level of maturity of most of the
quantities analyzed in the FLAG report, where, for instance, independent results by various
lattice collaborations are being compared and averaged. In the present version of this section
we will therefore review the current status of K → ππ lattice computations, but we will
provide a FLAG average only for the case of the decay amplitude A2.

We start by reviewing the determination of the parameter ξ = Im(A0)/Re(A0). An esti-
mate of ξ has been obtained from a direct evaluation of the ratio of amplitudes Im(A0)/Re(A0)
where Im(A0) is determined from a lattice-QCD computation by RBC/UKQCD 20 [29] em-
ploying Nf = 2+1 Möbius domain wall fermions at a single value of the lattice spacing while
Re(A0) ≃ |A0| and the value |A0| = 3.320(2) × 10−7 GeV are used based on the relevant
experimental input [11] from the decay to two pions. This leads to a result for ξ with a rather
large relative error,

ξ = −2.1(5) · 10−4. (153)

Following a similar procedure, an estimate of ξ was obtained through the use of a previous
lattice QCD determination of Im(A0) by RBC/UKQCD 15G [30]. We refer to Tab. 28 for
further details about these computations of Im(A0). The comparison of the estimates of ξ
based on lattice QCD input are collected in Tab. 30.

Another estimate for ξ can be obtained through a lattice-QCD computation of the ratio
of amplitudes Im(A2)/Re(A2) by RBC/UKQCD 15F [31] where the continuum-limit result
is based on computations at two values of the lattice spacing employing Nf = 2 + 1 Möbius
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domain wall fermions. Further details about the lattice computations of A2 are collected in
Tab. 29. To obtain the value of ξ, the expression in Eq. (151) together with the experimental
values of Re(ϵ′/ϵ), |ϵK | and ω are used. In this case we obtain ξ = −1.6(2) · 10−4. The use
of the updated value of Im(A2) = −8.34(1.03) × 10−13GeV from Ref. [29],1 in combination
with the experimental value of Re(A2) = 1.479(4)×10−8GeV, introduces a small change with
respect to the above result. The value for ξ reads 2

ξ = −1.7(2) · 10−4. (154)

A phenomenological estimate can also be obtained from the relationship of ξ to Re(ϵ′/ϵ),
using the experimental value of the latter and further assumptions concerning the estimate
of hadronic contributions. The corresponding value of ξ reads [9, 10]

ξ = −6.0(1.5) · 10−2
√
2 |ϵK | = −1.9(5) · 10−4. (155)

We note that the use of the experimental value for Re(ϵ′/ϵ) is based on the assumption that
it is free from New Physics contributions. The value of ξ can then be combined with a χPT-
based estimate for the long-range contribution, ρ = 0.6(3) [10]. Overall, the combination ρξ
appearing in Eq. (148) leads to a suppression of the SM prediction of |ϵK | by about 3(2)%
relative to the experimental measurement of |ϵK | given in Eq. (134), regardless of whether the
phenomenological estimate of ξ [see Eq. (155)] or the most precise lattice result [see Eq. (153)]
are used. The uncertainty in the suppression factor is dominated by the error on ρ. Although
this is a small correction, we note that its contribution to the error of ϵK is larger than that
arising from the value of BK reported below.

Efforts are under way to compute the long-distance contributions to ϵK [33] and to the
KL −KS mass difference in lattice QCD [25, 34–36]. However, the results are not yet precise
enough to improve the accuracy in the determination of the parameter ρ.

The lattice-QCD study of K → ππ decays provides crucial input to the SM prediction
of ϵK . We now proceed to describe the current status of these computations. In recent
years, the RBC/UKQCD collaboration has undertaken a series of lattice-QCD calculations of
K → ππ decay amplitudes [29–31]. In 2015, the first calculation of the K → (ππ)I=0 decay
amplitude A0 was performed using physical kinematics on a 323 × 64 lattice with an inverse
lattice spacing of a−1 = 1.3784(68) GeV [30, 37]. The main features of the RBC/UKQCD
15G calculation included, fixing the I = 0 ππ energy very close to the kaon mass by imposing
G-parity boundary conditions, a continuum-like operator mixing pattern through the use of
a domain wall fermion action with accurate chiral symmetry, and the construction of the
complete set of correlation functions by computing seventy-five distinct diagrams. Results
for the real and the imaginary parts of the decay amplitude A0 from the RBC/UKQCD 15G
computation are collected in Tab. 28, where the first error is statistical and the second one is
systematic.

1The update in Im(A2) is due to a change in the value of the imaginary part of the ratio of CKM matrix
elements, τ = −V ∗

tsVtd/V
∗
usVud, as given in Ref. [32]. The lattice QCD input is therefore the one reported in

Ref. [31].
2The current estimates for the corrections owing to isospin breaking and electromagnetic effects [28] imply

a relative change on the theoretical value for ϵ′/ϵ by about -20% with respect to the determination based on
Eq. (151). The size of these isospin breaking and electromagnetic corrections is related to the enhancement
of the decay amplitudes between the I = 0 and the I = 2 channels. As a consequence, one obtains a similar
reduction on ξ, leading to a value that is close to the result of Eq. (153).
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Re(A0) Im(A0)
[10−7 GeV] [10−11 GeV]

RBC/UKQCD 20 [29] 2+1 A ■ ◦ ◦ ⋆ a 2.99(0.32)(0.59) −6.98(0.62)(1.44)

RBC/UKQCD 15G [30] 2+1 A ■ ◦ ◦ ⋆ b 4.66(1.00)(1.26) −1.90(1.23)(1.08)

a Nonperturbative renormalization with the RI/SMOM scheme at a scale of 1.53GeV and running to
4.01GeV employing a nonperturbatively determined step-scaling function. Conversion to MS at 1-loop
order.

b Nonperturbative renormalization with the RI/SMOM scheme at a scale of 1.53GeV. Conversion to MS
at 1-loop order.

Table 28: Results for the real and imaginary parts of the K → ππ decay amplitude A0

from lattice-QCD computations with Nf = 2 + 1 dynamical flavours. Information about the
renormalization, running and matching to the MS scheme is indicated in the column “run-
ning/matching”, with details given at the bottom of the table. We refer to the text for further
details about the main differences between the lattice computations in Refs. [29] and [30].

The latest 2020 calculation RBC/UKQCD 20 [29] using the same lattice setup has im-
proved the 2015 calculation RBC/UKQCD 15G [30] in three important aspects: (i) an in-
crease by a factor of 3.4 in statistics; (ii) the inclusion of a scalar two-quark operator and
the addition of another pion-pion operator to isolate the ground state, and (iii) the use of
step scaling techniques to raise the renormalization scale from 1.53 GeV to 4.01 GeV. The
updated determinations of the real and the imaginary parts of A0 in Ref. [29] are shown in
Tab. 28.

As previously discussed, the determination of Im(A0) from Ref. [29] has been used to
obtain the value of the parameter ξ in Eq. (153). A first-principles computation of Re(A0)
is essential to address the so-called ∆I = 1/2 puzzle associated to the enhancement of ∆I =
1/2 over ∆I = 3/2 transitions owing, crucially, to long distance effects. Indeed, short-
distance enhancements in the Wilson coefficients are not large enough to explain the ∆I =
1/2 rule [38, 39]. Lattice-QCD calculations do provide a method to study such a long-
distance enhancement. The combination of the result for A0 in Tab. 28 with the earlier
lattice calculation of A2 in Ref. [31] leads to the ratio, Re(A0)/Re(A2) = 19.9(5.0), which
agrees with the experimentally measured value, Re(A0)/Re(A2) = 22.45(6). In Ref. [29], the
lattice determination of relative size of direct CP violation was updated as follows,

Re(ϵ′/ϵ) = 21.7(2.6)(6.2)(5.0)× 10−4, (156)

where the first two errors are statistical and systematic, respectively. The third error arises
from the omitted strong and electromagnetic isospin breaking effects. The value of Re(ϵ′/ϵ) in
Eq. (156) uses the experimental values of Re(A0) and Re(A2). The lattice determination of
Re(ϵ′/ϵ) is in good agreement with the experimental result in Eq. (152). However, while the
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Re(A2) Im(A2)
[10−8 GeV] [10−13 GeV]

RBC/UKQCD 15F [31] 2+1 A ◦ ◦ ⋆ ⋆ a 1.50(0.04)(0.14) −8.34(1.03)⋄

a Nonperturbative renormalization with the RI/SMOM scheme at a scale of 3 GeV. Conversion to MS
at 1-loop order.

⋄ This value of Im(A2) is an update reported in Ref. [29] which is based on the lattice QCD computation
in Ref. [31] but where a change in the value of the imaginary part of the ratio of CKM matrix elements
τ = −V ∗

tsVtd/V
∗
usVud reported in Ref. [32] has been applied.

Table 29: Results for the real and the imaginary parts of theK → ππ decay amplitude A2 from
lattice-QCD computations with Nf = 2+1 dynamical flavours. Information about the renor-
malization and matching to the MS scheme is indicated in the column “running/matching”,
with details given at the bottom of the table.

Collaboration Ref. Nf ξ

RBC/UKQCD 20† [29] 2+1 −2.1(5) · 10−4

RBC/UKQCD 15G⋄ [30] 2+1 −0.6(5) · 10−4

RBC/UKQCD 15F∗ [31] 2+1 −1.7(2) · 10−4

† Estimate for ξ obtained from a direct evaluation of the ratio of amplitudes Im(A0)/Re(A0) where
Im(A0) is determined from the lattice-QCD computation of Ref. [29] while for Re(A0) ≃ |A0| is taken
from the experimental value for |A0|.

⋄ Estimate for ξ obtained from a direct evaluation of the ratio of amplitudes Im(A0)/Re(A0) where
Im(A0) is determined from the lattice-QCD computation of Ref. [30] while for Re(A0) ≃ |A0| is taken
from the experimental value for |A0|.

∗ Estimate for ξ based on the use of Eq. (151). The new value of Im(A2) reported in Ref. [29]—based
on the lattice-QCD computation of Ref. [31] following an update of a nonlattice input—is used in
combination with the experimental values for Re(A2), Re(ϵ′/ϵ), |ϵK | and ω.

Table 30: Results for the parameter ξ = Im(A0)/Re(A0) obtained through the combination
of lattice-QCD determinations of K → ππ decay amplitudes with Nf = 2 + 1 dynamical
flavours and experimental inputs.

result in Eq. (156) represents a significant step forward, it is important to keep in mind that
the calculation of A0 is currently based on a single value of the lattice spacing. It is expected
that future work with additional values of the lattice spacing will contribute to improve the

8

http://arxiv.org/abs/2111.09849


Y. Aoki et al. FLAG Review 2021 2111.09849

precision. For a description of the computation of the ππ scattering phase shifts entering in
the determination of Re(ϵ′/ϵ) in Eq. (156), we refer to Ref. [40].

The real and imaginary values of the amplitudeA2 have been determined by RBC/UKQCD
15F [31] employing Nf = 2+1 Möbius domain wall fermions at two values of the lattice spac-
ing, namely a = 0.114 fm and 0.083 fm, and performing simulations at the physical pion mass
with MπL ≈ 3.8.

A compilation of lattice results for the real and imaginary parts of the K → ππ decay am-
plitudes, A0 and A2, with Nf = 2+1 flavours of dynamical quarks is shown in Tabs. 28 and 29.
In Appendix C.4.1 we collect the corresponding information about the lattice QCD simula-
tions, including the values of some of the most relevant parameters. The results for the
parameter ξ, determined through the combined use of K → ππ amplitudes computed on the
lattice and experimental inputs, are presented in Tab. 30. As previously discussed, we remark
that the total uncertainty on the reported values of ξ depends on the specific way in which
the lattice and experimental inputs are selected.

The determination of the real and imaginary parts of A2 by RBC/UKQCD 15F shown in
Tab. 29 is free of red tags. We therefore quote the following FLAG averages:

Re(A2) = 1.50(0.04)(0.14)× 10−8 GeV,
Nf = 2 + 1 : Ref. [31]. (157)

Im(A2) = −8.34(1.03)× 10−13 GeV,

Besides the RBC/UKQCD collaboration programme [29–31] using domain-wall fermions, an
approach based on improved Wilson fermions [41, 42] has presented a determination of the
K → ππ decay amplitudes, A0 and A2, at unphysical quark masses. For an analysis of
the scaling with the number of colours of K → ππ decay amplitudes using lattice-QCD
computations, we refer to Refs. [43, 44].

Recent proposals aiming at the inclusion of electromagnetism in lattice-QCD calculations
of K → ππ decays are being explored [45, 46] in order to reduce the uncertainties associated
with isospin breaking effects.

Finally, we notice that ϵK receives a contribution from |Vcb| through the λt parameter in
Eq. (140). The present uncertainty on |Vcb| has a significant impact on the error of ϵK (see,
e.g., Refs. [47, 48] and the recent update in Ref. [49]).

6.3 Lattice computation of BK

Lattice calculations of BK are affected by the same type of systematic effects discussed in
previous sections of this review. However, the issue of renormalization merits special attention.
The reason is that the multiplicative renormalizability of the relevant operator Q∆S=2 is lost
once the regularized QCD action ceases to be invariant under chiral transformations. As
a result, the renormalization pattern of BK depends on the specific choice of the fermionic
discretization.

In the case of Wilson fermions, Q∆S=2 mixes with four additional dimension-six operators,
which belong to different representations of the chiral group, with mixing coefficients that are
finite functions of the gauge coupling. This complicated renormalization pattern was identified
as the main source of systematic error in earlier, mostly quenched calculations of BK with
Wilson quarks. It can be bypassed via the implementation of specifically designed methods,
which are either based on Ward identities [50] or on a modification of the Wilson quark action,
known as twisted-mass QCD [51–53].
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An advantage of staggered fermions is the presence of a remnant U(1) chiral symme-
try. However, at nonvanishing lattice spacing, the symmetry among the extra unphysical
degrees of freedom (tastes) is broken. As a result, mixing with other dimension-six operators
cannot be avoided in the staggered formulation, which complicates the determination of the
B-parameter. In general, taste conserving mixings are implemented directly in the lattice com-
putation of the matrix element. The effects of the broken taste symmetry are usually treated
through an effective field theory, staggered Chiral Perturbation Theory (SχPT) [54, 55], pa-
rameterizing the quark-mass and lattice-spacing dependences.

Fermionic lattice actions based on the Ginsparg-Wilson relation [56] are invariant under
the chiral group, and hence four-quark operators such as Q∆S=2 renormalize multiplicatively.
However, depending on the particular formulation of Ginsparg-Wilson fermions, residual chi-
ral symmetry breaking effects may be present in actual calculations. For instance, in the case
of domain-wall fermions, the finiteness of the extra 5th dimension implies that the decoupling
of modes with different chirality is not exact, which produces a residual nonzero quark mass
in the chiral limit. The mixing with dimension-six operators of different chirality is expected
to be an O(m2

res) suppressed effect [57, 58] that should be investigated on a case-by-case basis.
Before proceeding to the description and compilation of the results of BK , we would like

to reiterate a discussion presented in the previous FLAG report about an issue related to the
computation of the kaon bag parameters through lattice-QCD simulations with Nf = 2+1+1
dynamical quarks. In practice, this only concerns the calculations of the kaon B-parameters
including dynamical charm-quark effects in Ref. [59], that were examined in the FLAG 16
report. As described in Sec. 6.1, the effective Hamiltonian in Eq. (138) depends solely on
the operator Q∆S=2 in Eq. (139) —which appears in the definition of BK in Eq. (145)— at
energy scales below the charm threshold where charm-quark contributions are absent. As a
result, a computation of BK based on Nf = 2 + 1 + 1 dynamical simulations will include an
extra sea-quark contribution from charm-quark loop effects for which there is at present no
direct evaluation in the literature.

When the matrix element of Q∆S=2 is evaluated in a theory that contains a dynamical
charm quark, the resulting estimate for BK must then be matched to the three-flavour theory
that underlies the effective four-quark interaction.3 In general, the matching of 2 + 1-flavour
QCD with the theory containing 2 + 1 + 1 flavours of sea quarks is performed around the
charm threshold. It is usually accomplished by requiring that the coupling and quark masses
are equal in the two theories at a renormalization scale µ around mc. In addition, BK should
be renormalized and run, in the four-flavour theory, to the value of µ at which the two theories
are matched, as described in Sec. 6.1. The corrections associated with this matching are of
order (E/mc)

2, where E is a typical energy in the process under study, since the subleading
operators have dimension eight [60].

When the kaon-mixing amplitude is considered, the matching also involves the relation
between the relevant box diagrams and the effective four-quark operator. In this case, cor-
rections of order (E/mc)

2 arise not only from the charm quarks in the sea, but also from
the valence sector, since the charm quark propagates in the box diagrams. We note that the
original derivation of the effective four-quark interaction is valid up to corrections of order
(E/mc)

2. The kaon-mixing amplitudes evaluated in the Nf = 2+1 and 2+1+1 theories are
thus subject to corrections of the same order in E/mc as the derivation of the conventional
four-quark interaction.

3We thank Martin Lüscher for an interesting discussion on this issue.
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Regarding perturbative QCD corrections at the scale of the charm-quark mass on the
amplitude in Eq. (141), the uncertainty on η1 and η3 factors is of O(αs(mc)

3) [13, 14], while
that on η2 is of O(αs(mc)

2) [61]. 4 On the other hand, the corrections of order (E/mc)
2 due

to dynamical charm-quark effects in the matching of the amplitudes are further suppressed
by powers of αs(mc) and by a factor of 1/Nc, given that they arise from quark-loop diagrams.
In order to make progress in resolving this so far uncontrolled systematic uncertainty, it is
essential that any future calculation of BK with Nf = 2 + 1 + 1 flavours properly addresses
the size of these residual dynamical charm effects in a quantitative way.

Another issue in this context is how the lattice scale and the physical values of the quark
masses are determined in the 2 + 1 and 2 + 1 + 1 flavour theories. Here it is important
to consider in which way the quantities used to fix the bare parameters are affected by a
dynamical charm quark.

A recent study [62] using three degenerate light quarks, together with a charm quark,
indicates that the deviations between the Nf = 3 + 1 and the Nf = 3 theories are consider-
ably below the 1% level in dimensionless quantities constructed from ratios of gradient flow
observables, such as t0 and w0, used for scale setting. This study extends the nonperturbative
investigations with two heavy mass-degenerate quarks [63, 64] which indicate that dynamical
charm-quark effects in low-energy hadronic observables are considerably smaller than the ex-
pectation from a naive power counting in terms of αs(mc). For an additional discussion on
this point, we refer to Ref. [59]. Given the hierarchy of scales between the charm-quark mass
and that of BK , we expect these errors to be modest, but a more quantitative understanding
is needed as statistical errors on BK are reduced. Within this review we will not discuss
this issue further. However, we wish to point out that the present discussion also applies to
Nf = 2 + 1 + 1 computations of the kaon BSM B-parameters discussed in Sec. 6.4.

A compilation of results for BK with Nf = 2, 2 + 1 and 2 + 1 + 1 flavours of dynamical
quarks is shown in Tabs. 31 and 32, as well as Fig. 20. An overview of the quality of systematic
error studies is represented by the colour coded entries in Tabs. 31 and 32. The values of
the most relevant lattice parameters, and comparative tables on the various estimates of
systematic errors have been collected in the corresponding Appendices of the previous FLAG
editions [65–67].

Since the last edition of the FLAG report no new results for BK have appeared in the
bibliography. We mention here an ongoing work related to the BK computation where the
relevant operators are defined in the gradient flow framework. In a first publication [68] the
small flow time expansion method is applied in order to compute, to 1-loop approximation, the
finite matching coefficients between the gradient flow and the MS schemes for the operators
entering the BK computation.

For a detailed description of previous BK calculations—and in particular those considered
in the computation of the average values—we refer the reader to the FLAG 19 [65], FLAG
16 [66] and FLAG 13 [67] reports.

We now give the global averages for BK for Nf = 2+1+1, 2+1 and 2 dynamical flavours.
The details about the calculation of these averages can be found in FLAG 19 [65].

We begin with the Nf = 2 + 1 global average since it is estimated by employing four
different BK results, namely BMW 11 [22], Laiho 11 [17], RBC/UKQCD 14B [20] and SWME

4The recent results [26] based on the use of u−t unitarity for the two corresponding perturbative factors, also
have an uncertainty of O(αs(mc)

2) and O(αs(mc)
3). The estimates for the missing higher-order contributions

are, however, expected to be reduced with respect to the more traditional case where c− t unitarity is used.
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Figure 20: Recent unquenched lattice results for the RGI B-parameter B̂K . The grey bands
indicate our global averages described in the text. For Nf = 2+ 1 + 1 and Nf = 2 the global
averages coincide with the results by ETM 15 and ETM 12D, respectively.

15A [21]. Note also that the expression of ϵK in terms of BK is obtained in the three-
flavour theory (see Sec. 6.1). After constructing the global covariance matrix according to
Schmelling [69], we arrive at:

Nf = 2 + 1 : B̂K = 0.7625(97) Refs. [17, 20–22], (158)

with χ2/dof = 0.675. After applying the NLO conversion factor B̂K/BMS
K (2GeV) = 1.369,5

this translates into

Nf = 2 + 1 : BMS
K (2GeV) = 0.5570(71) Refs. [17, 20–22]. (159)

Note that the statistical errors of each calculation entering the global average are small enough
to make their results statistically incompatible. It is only because of the relatively large
systematic errors that the weighted average produces a value of O(1) for the reduced χ2.

There is only a single result for Nf = 2+1+ 1, computed by the ETM collaboration [59].
Since it is free of red tags, it qualifies as the currently best global average, i.e.,

Nf = 2 + 1 + 1 : B̂K = 0.717(18)(16) , BMS
K (2GeV) = 0.524(13)(12) Ref. [59]. (160)

5We refer to the FLAG 19 report [65] for a discussion about the estimates of these conversion factors.
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For Nf = 2 flavours the best global average is given by a single result, that of ETM 12D [70]:

Nf = 2 : B̂K = 0.727(22)(12), BMS
K (2GeV) = 0.531(16)(19) Ref. [70]. (161)

The result in the MS scheme has been obtained by applying the same conversion factor of
1.369 as in the three-flavour theory.
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BK(MS, 2GeV) B̂K

ETM 15 [59] 2+1+1 A ⋆ ◦ ◦ ⋆ a 0.524(13)(12) 0.717(18)(16)1

RBC/UKQCD 16 [71] 2+1 A ◦ ◦ ◦ ⋆ b 0.543(9)(13)2 0.744(13)(18)3

SWME 15A [21] 2+1 A ⋆ ◦ ⋆ ◦‡ − 0.537(4)(26) 0.735(5)(36)4

RBC/UKQCD 14B [20] 2+1 A ⋆ ⋆ ⋆ ⋆ b 0.5478(18)(110)2 0.7499(24)(150)

SWME 14 [19] 2+1 A ⋆ ◦ ⋆ ◦‡ − 0.5388(34)(266) 0.7379(47)(365)

SWME 13A [72] 2+1 A ⋆ ◦ ⋆ ◦‡ − 0.537(7)(24) 0.735(10)(33)

SWME 13 [73] 2+1 C ⋆ ◦ ⋆ ◦‡ − 0.539(3)(25) 0.738(5)(34)

RBC/UKQCD 12A [18] 2+1 A ◦ ⋆ ◦ ⋆ b 0.554(8)(14)2 0.758(11)(19)

Laiho 11 [17] 2+1 C ⋆ ◦ ◦ ⋆ − 0.5572(28)(150) 0.7628(38)(205)4

SWME 11A [74] 2+1 A ⋆ ◦ ◦ ◦‡ − 0.531(3)(27) 0.727(4)(38)

BMW 11 [22] 2+1 A ⋆ ⋆ ⋆ ⋆ c 0.5644(59)(58) 0.7727(81)(84)

RBC/UKQCD 10B [75] 2+1 A ◦ ◦ ⋆ ⋆ d 0.549(5)(26) 0.749(7)(26)

SWME 10 [76] 2+1 A ⋆ ◦ ◦ ◦ − 0.529(9)(32) 0.724(12)(43)

Aubin 09 [77] 2+1 A ◦ ◦ ◦ ⋆ − 0.527(6)(21) 0.724(8)(29)

‡ The renormalization is performed using perturbation theory at 1-loop, with a conservative estimate of
the uncertainty.

a BK is renormalized nonperturbatively at scales 1/a ∼ 2.2 − 3.3GeV in the Nf = 4 RI/MOM scheme
using two different lattice momentum scale intervals, the first around 1/a while the second around
3.5 GeV. The impact of the two ways to the final result is taken into account in the error budget.
Conversion to MS is at 1-loop at 3 GeV.

b BK is renormalized nonperturbatively at a scale of 1.4 GeV in two RI/SMOM schemes for Nf = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. Conversion to MS is at
1-loop order at 3 GeV.

c BK is renormalized and run nonperturbatively to a scale of 3.5GeV in the RI/MOM scheme. At the
same scale conversion at 1-loop to MS is applied. Nonperturbative and NLO perturbative running
agrees down to scales of 1.8GeV within statistical uncertainties of about 2%.

d BK is renormalized nonperturbatively at a scale of 2GeV in two RI/SMOM schemes for Nf = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. Conversion to MS is at
1-loop order at 3 GeV.

1 BK(MS, 2GeV) and B̂K are related using the conversion factor 1.369, i.e., the one obtained with
Nf = 2 + 1.

2 BK(MS, 2GeV) is obtained from the estimate for B̂K using the conversion factor 1.369.
3 B̂K is obtained from BK(MS, 3GeV) using the conversion factor employed in Ref. [20].
4 B̂K is obtained from the estimate for BK(MS, 2GeV) using the conversion factor 1.369.

Table 31: Results for the kaon B-parameter in QCD with Nf = 2 + 1 + 1 and Nf = 2 +
1 dynamical flavours, together with a summary of systematic errors. Information about
nonperturbative running is indicated in the column “running”, with details given at the
bottom of the table.
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BK(MS, 2GeV) B̂K

ETM 12D [70] 2 A ⋆ ◦ ◦ ⋆ e 0.531(16)(9) 0.727(22)(12)1

ETM 10A [78] 2 A ⋆ ◦ ◦ ⋆ f 0.533(18)(12)1 0.729(25)(17)

e BK is renormalized nonperturbatively at scales 1/a ∼ 2− 3.7GeV in the Nf = 2 RI/MOM scheme. In
this scheme, nonperturbative and NLO perturbative running are shown to agree from 4 GeV down to
2 GeV to better than 3% [78, 79].

f BK is renormalized nonperturbatively at scales 1/a ∼ 2 − 3GeV in the Nf = 2 RI/MOM scheme. In
this scheme, nonperturbative and NLO perturbative running are shown to agree from 4 GeV down to
2 GeV to better than 3% [78, 79].

1 BK(MS, 2GeV) and B̂K are related using the conversion factor 1.369, i.e., the one obtained with Nf =
2 + 1.

Table 32: Results for the kaon B-parameter in QCD with Nf = 2 dynamical flavours, together
with a summary of systematic errors. Information about nonperturbative running is indicated
in the column “running”, with details given at the bottom of the table.

6.4 Kaon BSM B-parameters

We now report on lattice results concerning the matrix elements of operators that encode
the effects of physics beyond the Standard Model (BSM) to the mixing of neutral kaons. In
this theoretical framework both the SM and BSM contributions add up to reproduce the
experimentally observed value of ϵK . Since BSM contributions involve heavy but unobserved
particles they are short-distance dominated. The effective Hamiltonian for generic ∆S = 2
processes including BSM contributions reads

H∆S=2
eff,BSM =

5∑
i=1

Ci(µ)Qi(µ), (162)

where Q1 is the four-quark operator of Eq. (139) that gives rise to the SM contribution to
ϵK . In the so-called SUSY basis introduced by Gabbiani et al. [80] the operators Q2, . . . , Q5

read 6

Q2 =
(
s̄a(1− γ5)d

a
)(
s̄b(1− γ5)d

b
)
,

Q3 =
(
s̄a(1− γ5)d

b
)(
s̄b(1− γ5)d

a
)
,

Q4 =
(
s̄a(1− γ5)d

a
)(
s̄b(1 + γ5)d

b
)
,

Q5 =
(
s̄a(1− γ5)d

b
)(
s̄b(1 + γ5)d

a
)
, (163)

6Thanks to QCD parity invariance lattice computations for three more dimension-six operators, whose
parity conserving parts coincide with the corresponding parity conserving contributions of the operators Q1, Q2

and Q3, can be ignored.

15

http://arxiv.org/abs/2111.09849


Y. Aoki et al. FLAG Review 2021 2111.09849

where a and b denote colour indices. In analogy to the case of BK one then defines the
B-parameters of Q2, . . . , Q5 according to

Bi(µ) =

〈
K̄0 |Qi(µ)|K0

〉
Ni

〈
K̄0 |s̄γ5d| 0

〉
⟨0 |s̄γ5d|K0⟩

, i = 2, . . . , 5. (164)

The factors {N2, . . . , N5} are given by {−5/3, 1/3, 2, 2/3}, and it is understood that Bi(µ)
is specified in some renormalization scheme, such as MS or a variant of the regularization-
independent momentum subtraction (RI-MOM) scheme.

The SUSY basis has been adopted in Refs. [59, 70, 71, 81]. Alternatively, one can employ
the chiral basis of Buras, Misiak and Urban [82]. The SWME collaboration prefers the latter
since the anomalous dimension that enters the RG running has been calculated to 2-loops in
perturbation theory [82]. Results obtained in the chiral basis can be easily converted to the
SUSY basis via

BSUSY
3 = 1

2

(
5Bchiral

2 − 3Bchiral
3

)
. (165)

The remaining B-parameters are the same in both bases. In the following we adopt the SUSY
basis and drop the superscript.

Older quenched results for the BSM B-parameters can be found in Refs. [83–85]. For a
nonlattice approach to get estimates for the BSM B-parameters see Ref. [86].

Estimates for B2, . . . , B5 have been reported for QCD with Nf = 2 (ETM 12D [70]),
Nf = 2 + 1 (RBC/UKQCD 12E [81], SWME 13A [72], SWME 14C [87], SWME 15A [21],
RBC/UKQCD 16 [71, 88]) and Nf = 2 + 1 + 1 (ETM 15 [59]) flavours of dynamical quarks.
Since the publication of the FLAG 19 report [65] no new results for the BSM B-parameters
have appeared in the bibliography. The available results are listed and compared in Tab. 33
and Fig. 21. In general one finds that the BSM B-parameters computed by different col-
laborations do not show the same level of consistency as the SM kaon-mixing parameter BK

discussed previously. Control over the systematic uncertainties from chiral and continuum ex-
trapolations as well as finite-volume effects in B2, . . . , B5 is expected to be at a commensurate
level as for BK , as far as the results by ETM 12D, ETM 15, SWME 15A and RBC/UKQCD
16 are concerned, since the set of gauge ensembles employed in both kinds of computations
is the same. The calculation by RBC/UKQCD 12E has been performed at a single value of
the lattice spacing and a minimum pion mass of 290MeV.

Let us notice that as reported in RBC/UKQCD 16 [71] the comparison of results obtained
in the conventional RI-MOM and two RI-SMOM schemes shows significant discrepancies for
B4 and B5 in the MS scheme at the scale of 3GeV, which amount up to 2.8σ in the case of
B5. By contrast, the agreement for B2 and B3 determined for different intermediate scheme is
much better. The RBC/UKQCD collaboration has presented an ongoing study [89] in which
simulations with two values of the lattice spacing at the physical point and with a third finer
lattice spacing at Mπ = 234 MeV are employed in order to obtain the BSM matrix elements
in the continuum limit. Results are still preliminary.

The findings by RBC/UKQCD 16 [71, 88] provide evidence that the nonperturbative
determination of the matching factors depends strongly on the details of the implementation of
the Rome-Southampton method. The use of nonexceptional momentum configurations in the
calculation of the vertex functions produces a significant modification of the renormalization
factors, which affects the matching between MS and the intermediate momentum subtraction
scheme. This effect is most pronounced in B4 and B5. Furthermore, it can be noticed that
the estimates for B4 and B5 from RBC/UKQCD 16 are much closer to those of SWME
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15A. At the same time, the results for B2 and B3 obtained by ETM 15, SWME 15A and
RBC/UKQCD 16 are in good agreement within errors.
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B2 B3 B4 B5

ETM 15 [59] 2+1+1 A ⋆ ◦ ◦ ⋆ a 0.46(1)(3) 0.79(2)(5) 0.78(2)(4) 0.49(3)(3)

RBC/UKQCD 16 [71] 2+1 A ◦ ◦ ◦ ⋆ b 0.488(7)(17) 0.743(14)(65) 0.920(12)(16) 0.707(8)(44)

SWME 15A [21] 2+1 A ⋆ ◦ ⋆ ◦† − 0.525(1)(23) 0.773(6)(35) 0.981(3)(62) 0.751(7)(68)

SWME 14C [87] 2+1 C ⋆ ◦ ⋆ ◦† − 0.525(1)(23) 0.774(6)(64) 0.981(3)(61) 0.748(9)(79)

SWME 13A‡ [72] 2+1 A ⋆ ◦ ⋆ ◦† − 0.549(3)(28) 0.790(30) 1.033(6)(46) 0.855(6)(43)

RBC/ [81] 2+1 A ■ ◦ ⋆ ⋆ b 0.43(1)(5) 0.75(2)(9) 0.69(1)(7) 0.47(1)(6)
UKQCD 12E

ETM 12D [70] 2 A ⋆ ◦ ◦ ⋆ c 0.47(2)(1) 0.78(4)(2) 0.76(2)(2) 0.58(2)(2)

† The renormalization is performed using perturbation theory at 1-loop, with a conservative estimate of
the uncertainty.

a Bi are renormalized nonperturbatively at scales 1/a ∼ 2.2 − 3.3GeV in the Nf = 4 RI/MOM scheme
using two different lattice momentum scale intervals, with values around 1/a for the first and around
3.5 GeV for the second one. The impact of these two ways to the final result is taken into account in
the error budget. Conversion to MS is at 1-loop at 3 GeV.

b The B-parameters are renormalized nonperturbatively at a scale of 3 GeV.

c Bi are renormalized nonperturbatively at scales 1/a ∼ 2 − 3.7GeV in the Nf = 2 RI/MOM scheme
using two different lattice momentum scale intervals, with values around 1/a for the first and around
3 GeV for the second one.

‡ The computation of B4 and B5 has been revised in Refs. [21] and [87].

Table 33: Results for the BSM B-parameters B2, . . . , B5 in the MS scheme at a reference scale
of 3GeV. Information about nonperturbative running is indicated in the column “running”,
with details given at the bottom of the table.
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A nonperturbative computation of the running of the four-fermion operators contributing
to the B2, . . . , B5 parameters has been carried out with two dynamical flavours using the
Schrödinger functional renormalization scheme [24]. Renormalization matrices of the operator
basis are used to build step-scaling functions governing the continuum-limit running between
hadronic and electroweak scales. A comparison to perturbative results using NLO (2-loops)
for the four-fermion operator anomalous dimensions indicates that, at scales of about 3GeV,
nonperturbative effects can induce a sizeable contribution to the running.

A detailed look at the calculations reported in the works of ETM 15 [59], SWME 15A
[21] and RBC/UKQCD 16 [71] reveals that cutoff effects appear to be larger for the BSM
B-parameters compared to BK . Depending on the details of the renormalization procedure
and/or the fit ansatz for the combined chiral and continuum extrapolation, the results ob-
tained at the coarsest lattice spacing differ by 15–30%. At the same time the available range
of lattice spacings is typically much reduced compared to the corresponding calculations of
BK , as can be seen by comparing the quality criteria in Tabs. 31 and 33. Hence, the impact of
the renormalization procedure and the continuum limit on the BSM B-parameters certainly
requires further investigation.

Finally we present our estimates for the BSM B-parameters, quoted in the MS-scheme at
scale 3GeV. For Nf = 2 + 1 our estimate is given by the average between the results from
SWME 15A and RBC/UKQCD 16, i.e.,

Nf = 2 + 1 : (166)

B2 = 0.502(14), B3 = 0.766(32), B4 = 0.926(19), B5 = 0.720(38), Refs. [21, 71].

For Nf = 2 + 1 + 1 and Nf = 2, our estimates coincide with the ones by ETM 15 and ETM
12D, respectively, since there is only one computation for each case. Thus we quote

Nf = 2 + 1 + 1 : (167)

B2 = 0.46(1)(3), B3 = 0.79(2)(5), B4 = 0.78(2)(4), B5 = 0.49(3)(3), Ref. [59],

Nf = 2 : (168)

B2 = 0.47(2)(1), B3 = 0.78(4)(2), B4 = 0.76(2)(2), B5 = 0.58(2)(2), Ref. [70].

Based on the above discussion on the effects of employing different intermediate momentum
subtraction schemes in the nonperturbative renormalization of the operators, the discrepancy
for B4 and B5 results between Nf = 2, 2 + 1 + 1 and Nf = 2 + 1 computations should
not be considered an effect associated with the number of dynamical flavours. To clarify
the present situation, it would be important to perform a direct comparison of results by
the ETM collaboration obtained both with RI-MOM and RI-SMOM methods. Furthermore,
extending the computation of the BSM-B parameters to include physical point simulations
with improved continuum-limit extrapolations would also provide valuable information. As a
closing remark, we encourage authors to provide the correlation matrix of the Bi parameters
since this information is required in phenomenological studies of New Physics scenarios.
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