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11 Scale setting
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Matching QCD to Nature requires fixing the quark masses and matching an overall scale
to experiment. That overall energy scale S may be taken, for example, as the nucleon mass.
This process is referred to as scale setting.

11.1 Impact

The scale setting procedure, described in some detail below, is a rather technical step necessary
to obtain predictions from QCD. What may easily be overlooked is that the exact predictions
obtained may depend rather sensitively on the scale.

As long as the theory is incomplete, e.g., because we have predictions from Nf = 2 + 1
QCD, results will depend on which physics scale is used. Whenever a theory scale (see
Sec. 11.5) is used, it matters which value one imposes. Thus, to know whether computations
of a particular quantity agree or not, one should check which (value for a) scale was used.

The sensitivity of predictions to the scale vary with the observable. For example, the Λ
parameter of the theory has a linear dependence,

δΛ

Λ
≈ δS
S
, (460)

because Λ has mass dimension one and other hidden dependences on the scale are (usually)
suppressed. Let us preview the results. The present precision on the most popular theory
scale, w0 in Eq. (510) is about 0.4% and for

√
t0 it is 0.6%. On the Λ parameter it is about

3%. Thus, we would think that the scale uncertainty is irrelevant. However, in Sec. 11.8 we
will discuss that differences between Nf = 2 + 1 and 2+1+1 numbers for

√
t0 are at around

2% which does matter.
Also, light-quark masses have an approximatively linear dependence on the scale (roughly

speaking one determines, e.g., mud = 1
S × [m2

π]exp × [mud S
m2
π

]lat) and scale uncertainties may

play an important rôle in the discussion of agreement vs. disagreement of computations within
their error budget.

The list of quantities where scale setting is very important may be continued; we just want
to mention an observable very much discussed at present, the hadronic vacuum polarisation
contribution to the anomalous magnetic moment of the muon [1]. It is easily seen that the
dependence on the scale is about quadratic in that case [2],

δaHVP
µ

aHVP
µ

≈ 2
δS
S
. (461)

This fact means that scale setting has to be precise at the few per-mille precision to have
an impact [3] on the discussion whether or not aµ computed in the standard model shows a
deviation from experiment.

11.2 Scale setting as part of hadronic renormalization schemes

We consider QCD with Nf quarks and without a θ-parameter. This theory is completely
defined by its coupling constant as well as Nf quark masses. After these parameters are
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specified all other properties of the theory are predictions. Coupling and quark masses depend
on a renormalization scale µ as well as on a renormalization scheme. The most popular scheme
in the framework of perturbative computations is the MS scheme, but one may also define
nonperturbative renormalization schemes, see Secs. 3 and 9.

In principle, a lattice computation may, therefore, use these Nf + 1 parameters as input
together with the renormalization scale µ to fix the bare quark masses and coupling of the dis-
cretized Lagrangian, perform continuum and infinite volume limit and obtain desired results,
e.g., for decay rates.1 However, there are various reasons why this strategy is inefficient. The
most relevant one is that coupling and quark masses cannot be obtained from experiments
without invoking perturbation theory and thus necessarily truncation errors. Moreover, these
parameters are naturally short distance quantities, since this is where perturbation theory
applies. Lattice QCD on the other hand is most effective at long distances, where the lattice
spacing plays a minor role. Therefore, it is more natural to proceed differently.

Namely, we may fix Nf + 1 nonperturbative, long-distance observables to have the values
found in Nature. An obvious choice are Nf + 1 hadron masses that are stable in the absence
of weak interactions. This hadronic renormalization scheme is defined by

Mi(g0, {am0,j})
M1(g0, {am0,j})

=
M exp
i

M exp
1

, i = 2 . . . Nf + 1 , j = 1 . . . Nf . (462)

Here, Mi are the chosen hadron masses, g0 is the bare coupling, and am0,j are the bare
quark masses in lattice units. The ratio Mi/M1 is, precisely speaking, defined through the
hadron masses in lattice units, but in infinite volume. In QCD (without QED), all particles are
massive. Therefore, the infinite volume limit of the properties of stable particles is approached
with exponentially small corrections which are assumed to be estimated reliably. The power-
like finite-volume corrections in QCD+QED are discussed in subsection 11.3. For fixed g0,
Eq. (462) needs to be solved for the bare quark masses,

am0,j = µj(g0) . (463)

The functions µj define a line in the bare parameter space, called the line of constant physics.
Its dependence on the set of masses {Mi} is suppressed. The continuum limit is obtained
as g0 → 0 with the lattice spacing shrinking roughly as aM1 ∼ e−1/(2b0g2

0). More precisely,
consider observables O with mass dimension dO. One defines their dimensionless ratio

Ô(aM1) =
O
MdO

1

∣∣∣∣∣
am0,j=µj(g0)

, (464)

and obtains the continuum prediction as

Ocont = (M exp
1 )

dO lim
aM1→0

Ô(aM1) (465)

which explains why the determination and use of aM1 is referred to as scale setting.
Equation (463) has to be obtained from numerical results. Therefore, it is easiest and most

transparent if the i-th mass ratio depends predominantly on the i-th quark mass. Remaining
for a while in the isospin-symmetric theory with m0,1 = m0,2 (we enumerate the quark masses

1At first sight this seems like too many inputs, but note that it is the scale µ, at which α(µ) has a particular
value, which is the input. The coupling α by itself can have any (small) value as it runs.
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in the order up, down, strange, charm, bottom and ignore the top quark), we have natural
candidates for the numerators as the pseudoscalar masses in the associated flavour sectors, i.e.,
π, K, D, B. The desired strong dependence on light- (strange-)quark masses of π- (K-)meson
masses derives from their pseudo-Goldstone nature of the approximate SU(3)L × SU(3)R

symmetry of the massless QCD Lagrangian which predicts that M2
π is roughly proportional

to the light-quark mass and M2
K to the sum of light- and strange-quark masses. For D and

B mesons approximate heavy-quark symmetry predicts MD and MB to be proportional to
charm- and bottom-quark masses. Also other heavy-light bound states have this property.
There is another important feature which singles out pseudoscalar masses. Because they are
the lightest particles with the given flavour quantum numbers, their correlation functions
have the least signal/noise problem in the Monte Carlo evaluation of the path integral [4, 5].

Still restricting ourselves to isospin-symmetric QCD (isoQCD), we thus take it for granted
that the choice Mi, i ≥ 2 is easy, and we do not need to discuss it in detail: the pseudoscalar
meson masses are very good choices, and some variations for heavy quarks may provide further
improvements.

The choice of M1 is more difficult. From the point of view of physics, a natural choice is
the nucleon mass, M1 = Mnucl. Unfortunately it has a rather bad signal/noise problem when
quark masses are close to their physical values. The ratio of signal to noise of the correlation
function at time x0 from N measurements behaves as [4]

Rnucl
S/N

x0 large∼
√
N exp(−(mnucl −

3

2
mπ)x0) ≈

√
N exp(−x0/0.27 fm) , (466)

where the numerical value of 0.27 fm uses the experimental masses. The behaviour in practice,
but at still favourably large quark masses, is illustrated in Fig. 50. Because this property leads
to large statistical errors and it is further difficult to control excited-state contaminations when
statistical errors are large, it is useful to search for alternative physics scales. The community
has gone this way, and we discuss some of them below. For illustration, here we just give
one example: the decay constants of leptonic π or K decays have mass dimension one and
can directly replace M1 above. Figure 50 demonstrates their long and precise plateaux as a
function of the Euclidean time. Advantages and disadvantages of this choice and others are
discussed more systematically in Sec. 11.4.

11.2.1 Theory scales

Since the signal/noise problem of physics scales is rather severe, they were already replaced
by theory scales in the very first days of lattice QCD. These scales cannot be determined from
experiment alone. Rather, their values have to be computed by lattice QCD using a physics
scale as input.

Creutz already used the string tension in his seminal paper on SU(2) Yang Mills theory
[11], because it is by far easier to determine than glueball masses. A further step was made
by the potential scale r0, defined in terms of the static force F (r) as [12]

r2
0F (r0) = 1.65 . (467)

Even though r0 can vaguely be related to the phenomenology of charmonium and bottomo-
nium states, its precise definition is in terms of F (r) which can be obtained accurately from
Monte Carlo lattice computations with (improvable) control over the uncertainties, but not
from experiment. In that sense, it is a prototype of a theory scale.
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Figure 50: Effective masses for Mproton [6], MΩ [7], V (≈ r0), V (≈ r1) [8] and fπ [9] on Nf = 2
CLS ensemble N6 with a = 0.045 fm,Mπ = 340 MeV on a 483 96 lattice [9]. All effective
“masses” have been scaled such that the errors in the graph reflect directly the errors of the
determined scales. They are shifted vertically by arbitrary amounts. Figure from Ref. [10].
Note that this example is at still favourably large quark masses. The situation for Mproton

becomes worse closer to the physical point, but may be changed by algorithmic improvements.

Useful properties of a good theory scale are high statistical accuracy, easy to control system-
atics (also large volume), quark mass dependence only due to the fermion determinant, and
low numerical cost for its evaluation. These properties are realized to varying degrees by the
different theory scales covered in this section and, in this respect, they are much preferred
compared to physics scales. Consequently, the physics scale M1 has often been replaced by a
theory scale as, e.g., S = r−1

0 in the form

Ocont =
(
Sphys

)dO
lim
aS→0

ÔS(aS) with ÔS(aS) =
[
S−dO O

]
am0,j=µj(g0)

, (468)

and
Sphys = (M exp

1 ) lim
aM1→0

ŜM1(aM1) . (469)

In this section, we review the determination of numerical results for the values of various
theory scales in physical units, Eq. (469). The main difficulty is that a physics scale M1 has
to be determined first in order to connect to Nature and, in particular, that the continuum
limit of the theory scale in units of the physics scale has to be taken.

11.3 Isospin breaking, electromagnetism, and definition of hadronic schemes

11.3.1 The approximate nature of QCD

For simplicity and because it is a very good approximation, we have assumed above that
all other interactions except for QCD can be ignored when hadron masses and many other
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properties of hadrons are considered. This is a natural point of view because QCD is a
renormalizable field theory and thus provides unique results.

However, we must be aware that while it is true that the predictions (e.g., for hadron
masses Mi, i > Nf + 1) are unique once Eq. (462) is specified, they will change when we
change the inputs M exp

i . These ambiguities are due to the neglected electroweak and gravita-
tional interactions, namely because QCD is only an approximate—even if precise—theory of
hadrons. At the sub-percent level, QED effects and isospin violations due to mu 6= md must
be included. At that level one has a very precise description of Nature, where weak decays or
weak effects, in general, can be included perturbatively and systematically in an effective field
theory description through the weak effective interaction Hamiltonian, while gravity may be
ignored.

We now discuss how to handle the scale setting as part of the renormalization of QCD+QED.
Note that a similar discussion with emphasis on quark masses can be found in Sec. 3. In the
following discussion, we focus more on the issues related to the scale setting (see also Ref. [13]).
In this connection, triviality of QED does not play a rôle at small enough α: we may think of
replacing the continuum limit a → 0 by a limit a → aw with aw nonzero but very far below
all QCD+QED scales.

11.3.2 Hadronic renormalization of QCD+QED

The definition and implementation of a hadronic renormalization scheme of QCD+QED de-
fined on the lattice needs some additions to subsection 11.2 which we now discuss.

In addition to the Nf + 1 parameters of the QCD action (without isospin symmetry), one
now also has the elementary electric charge e. This requires Nf +2 experimentally measurable
observables to fix the bare parameters of the theory. A natural choice for the experimental
inputs are again hadron masses. Indeed, hadron masses are infrared safe quantities also in
QCD+QED, while in the cases of cross sections and decay rates, infrared divergences appear at
intermediate stages of the calculations (see below). Therefore, we consider the generalization

Mi(g0, e0, {am0,j})
M1(g0, e0, {am0,j})

=
M exp
i

M exp
1

, i = 2 . . . Nf + 2 , j = 1 . . . Nf (470)

of Eq. (462). Here, Mi are the chosen hadron masses, g0 the bare strong coupling, e0 the bare
electric charge, and am0,j are the bare quark masses in lattice units. For fixed g0, the system
of equations (470) now needs to be solved for the bare quark masses and the bare electric
charge,

am0,j = µj(g0) , e0 = e(g0) , (471)

to obtain the line of constant physics of the theory. Some observations are in order.
So far, we have assumed that QCD+QED is simulated nonperturbatively in the electro-

magnetic coupling constant αem. In this case, the bare electric charge can be conveniently
fixed by considering among the experimental inputs both the charged and neutral pion masses.
Indeed, by neglecting terms of O((mu −md)

2) [14] one has that m2
π+ −m2

π0 ∼ αem. If the
theory is instead treated neglecting O(α2

em) contributions, the electric charge does not renor-
malize and it is consistent and convenient to fix it by the condition [15]

4π

e2
0

=
1

αThomson
em

= 137.035999084(21) . (472)
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Another important difference from pure QCD concerns finite-volume effects. In contrast
to the exponentially suppressed finite-volume effects of stable hadron masses at αem = 0, in
QCD+QED with αem > 0 finite-volume effects are

Mi(g0, e0, am0,j;L)

Mi(g0, e0, am0,j;∞)
= 1 +

αemq
2
i ξ(1)

LMi(g0, e0, am0,j;∞)
+

αemq
2
i ξ(2)

[LMi(g0, e0, am0,j;∞)]2
+O

(
L−n, α2

em

)
,

(473)
where qi is the electric charge of the hadron in units of the charge of the positron, the ξ(i)
are known numerical constants that depend on the spatial boundary conditions, and the
remainder terms start with a power n = 3 in the QEDL formulation[16, 17] and with n = 4
in QEDC [18]. These two definitions of QED in a finite volume are discussed in Refs. [19–21]
and Refs. [18, 22, 23], respectively. For other formulations [24–26], we refer to Sec. 3 and
for a discussion on open problems to Ref. [27]. Since the bare parameters need to be fixed
through experimental observables, finite volume effects have to be removed from the Mi and
the behaviour Eq. (473) is crucial in this respect.

Another important observation concerns the use of observables associated with decay rates
or cross sections in setting the scale. The issue is particularly subtle in QCD+QED because
of the well known problem associated with the appearance of infrared divergences at inter-
mediate stages of the calculations. The solution requires a proper definition of infrared-safe
observables, according to the Bloch–Nordsieck mechanism [28]. These measurable observables
are obtained by including in the final state of a process any number of soft photons with total
energy up to a given physical threshold. Once the infrared-safe measurable observable has
been constructed, it can be used in the scale setting as any other measurable quantity. A
particularly relevant example is the leptonic decay rate of the pion,

ΓQCD+QED[π− 7→ µν̄µ(γ), Eγ ] . (474)

Here, phase space is integrated over with the constraint that the total energy of the photons is
below Eγ . The feasibility of using such an observable in place of a stable hadron mass has to
be judged on the basis of the overall precision, statistical plus systematics, that is achievable
in the lattice calculation (see Refs. [13, 29]).

11.3.3 Hadronic definition of QCD and of QED corrections

Under the assumption of negligible weak (and gravity) corrections QCD+QED is the complete
theory and, therefore, the predictions obtained from lattice simulations for any observable
OQCD+QED, that has not already been used in the scale setting, are unambiguous. On the
contrary, what we call the QCD contribution OQCD and the associated radiative corrections,

δOQCD =
OQCD+QED

OQCD
− 1 , (475)

do depend upon the inputs used to define QCD.
Going back to Eq. (462), different hadronic definitions of QCD can be obtained by chosing

different hadron masses and/or different values for the “physical” inputs. Once we have chosen
which hadron masses to use, the different hadronic schemes can be identified by writing

Mi(g0, {am0,j})
M1(g0, {am0,j})

=
MQCD
i

MQCD
1

, i = 2 . . . Nf + 1 , j = 1 . . . Nf , (476)
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and by specifying the values of the external inputs, for example parameterized by εQCD
i in2

MQCD
i = M exp

i

(
1 + εQCD

i

)
. (477)

A “natural” choice is to set εQCD
i = 0, i.e., to define QCD by using exactly the experimental

values for the stable hadron masses entering the calibration procedure. In this case, if the
same hadron mass is used in the definition of the full theory, Eq. (470), and in the definition
of QCD, then the radiative corrections on these quantities are zero by construction. Radiative
corrections on any other predictable quantity are well defined and nonvanishing.

In light of this observation, the introduction of the εQCD
i parameters might appear unnec-

essary. However, this is not the case for the following reasons. Isosymmetric QCD (isoQCD),
already introduced in Sec. 11.2, is another good approximation of the real world. Due to
mu = md = mud, the theory only depends on Nf parameters. In order to set the masses
of the light and strange quarks in isoQCD the options of using the charged or the neutral
pion and kaon masses are equally valid from the physical point of view. If one picks, e.g.,
the neutral meson masses, then one has nonzero εi when the right hand side of Eq. (477)
is written in terms of the charged ones. Furthermore, on the basis of symmetry arguments
and/or (chiral) effective theory calculations one may argue that certain linear combinations
of charged and neutral meson masses are more “natural” than others (see the discussion in
the quark-mass section, Sec. 3) because the resulting radiative corrections are smaller.

As a matter of fact, many of the existing lattice calculations have been performed in the
isospin-symmetric limit, but not all the results considered in this review correspond to the
very same definition of QCD. The commonly adopted values for the pion and Ω masses in
isoQCD are

M isoQCD
π = M exp

π0 , M isoQCD
Ω = M exp

Ω− in Refs. [31–33] .

For the kaon mass in isoQCD different collaborations made different choices, e.g., the values

M isoQCD
K = 494.2(4) MeV in Refs. [31, 34, 35] ,

M isoQCD
K = 495.7 MeV in Ref. [32] ,

M isoQCD
K = 497.6 MeV in Ref. [33] .

The different choices of experimental inputs are perfectly legitimate if QED radiative correc-
tions are neglected, but in principle predictions of isoQCD do depend on these choices, and it
is not meaningful to average numbers obtained with different inputs. However, at the present
level of precision the sub-percent differences in the inputs are most likely not relevant, and
we will average and compare isoQCD results irrespective of these differences. The issue will
become important when results become significantly more precise. Of course, it may not be
ignored, when radiative corrections, Eq. (475), are directly compared between collaborations.
In this case, we strongly suggest to compare results for the unambiguous full theory observable
or to stick to a standard.

2After having calibrated the full theory (QCD+QED) with physical hadronic inputs, one can compute the
strong coupling constant and the quark masses in a given renormalization scheme. These can then be used
to define QCD by matching the corresponding renormalized quantities. This is the so–called GRS approach
originally introduced in Ref. [30]. We refer to Ref. [13] for a discussion concerning the connection of the ε–
language used here and the GRS scheme, and to Sec. 3 for a detailed discussion of the different schemes that
have been used in the literature to define (iso)QCD including the original references on the subject.
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Indeed, for the future, it is highly desirable to define such a standard for the parameters
used to define (iso)QCD. We suggest using3

M isoQCD
π = M exp

π0 ,
(478)

M isoQCD
K = M exp

K0 ,

while it is difficult to define a standard scale M1 right now. Going by the majority of the
large-scale computations, the two options mΩ and pion leptonic decay rate are equally popular
at the moment (see Sec. 11.4).

Since leptonic decay rates of pion and kaon play a prominent rôle in scale setting, we
discuss the (pure) QCD definition of these quantities and of the associated radiative correc-
tions in some detail. There are no ambiguities in the definition of the physical observable
in QCD+QED that, in this case, is the decay rate introduced in Eq. (474) above. We now
assume that (iso)QCD has been already defined by using as hadronic inputs hadron masses.
It is then possible to compute the leptonic decay rate in QCD,

ΓQCD[π 7→ µν̄µ] =
G2
F

8π
|Vud|2M exp

π−

(
mexp
µ

)2 [
1− (mexp

µ )
2(

M exp
π−

)2
] (

fQCD
π

)2
(479)

where the so–called decay constant of the pion is given by

fQCD
π =

〈0| ūγ0γ5d |π〉QCD

MQCD
π

. (480)

Radiative corrections to fQCD
π are then defined by

δfQCD
π (Eγ) =

√
ΓQCD+QED[π− 7→ µν̄µ(γ), Eγ ]

ΓQCD[π 7→ µν̄µ]
− 1 , (481)

such that

ΓQCD+QED[π− 7→ µν̄µ(γ), Eγ ] = ΓQCD[π 7→ µν̄µ]
[
1 + δfQCD

π (Eγ)
]2
. (482)

We want to stress once again that the definition of δfQCD
π (Eγ) is not unique. As in the

case of any other observable, different values of δfQCD
π (Eγ) are obtained if one changes the

prescription used to define QCD. In this case, in addition, one has to specify the photon energy
treshold Eγ and, moreover, the exact expression used to define ΓQCD. Indeed, it would be
perfectly legitimate to replace M exp

π− appearing in the kinematical factors of Eq. (479) with

MQCD
π . The effect of such a different definition of ΓQCD would be compensated by a change

in δfQCD
π (Eγ) with no ambiguities in the full theory observable ΓQCD+QED.

We mentioned in Sec. 11.2 that there are advantages from the numerical point of view
in using the leptonic decay constants of the mesons in the QCD scale setting procedure.

3We note that the π0 is unstable in QCD+QED and, therefore, it is much more convenient to use Mexp

π+

to calibrate the full theory. Although it is perfectly consistent to use different observables in the calibration
of the full theory and of isoQCD, in the specific case one can write M isoQCD

π = Mexp

π+ (1 + εisoQCD
π ) with

εisoQCD
π = (Mexp

π0 −Mexp

π+ )/Mexp

π+ . In that language, the same observable is used in both theories but with a
nonvanishing ε.
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That observation can now be made more precise in light of the discussion of the previous
paragraph. When we say that we use fπ to calibrate QCD, we mean that we choose a value
for the δfQCD

π (Eγ) and we define

fQCD
π =

1

1 + δfQCD
π (Eγ)

√√√√√√
Γexp[π− 7→ µν̄µ(γ), Eγ ]

G2
F

8π |Vud|2M
exp
π− (mexp

µ )
2

[
1− (mexp

µ )
2(

Mexp

π−

)2

] . (483)

In the notation of the ε parameters introduced above, one has

1 + εQCD
fπ

=
1

1 + δfQCD
π (Eγ)

. (484)

Again, a possible choice would be to set εQCD
fπ

to zero and to use directly the experimentally

measured decay rate at a given value of Eγ .4 Common practice among the different lattice
collaborations is to set

Eγ = Emax
γ =

M exp
π−

2

[
1− (mexp

µ )
2(

M exp
π−

)2
]
, (485)

the maximum energy allowed to a single photon in the case of negligible O(α2
em) corrections,

and to use the value
δf isoQCD
π (Emax

γ ) = 0.0088(11) (486)

obtained in Refs. [36–38] in chiral perturbation theory and using the standard definition
Eq. (478). The corresponding number for kaon decays is

δf isoQCD
K (Emax

γ ) = 0.0053(11) . (487)

A recent lattice determination in the electro-quenched approximation [13]

δf isoQCD
π (Emax

γ ) = 0.0076(9) , (488)

agrees well with Eq. (486), while the number for Kaon decays,

δf isoQCD
K (Emax

γ ) = 0.0012(5) , (489)

differs by more than three (quadratically combined) error bars from Eq. (487). The scheme
dependence can be neglected at the present level of accuracy.

11.4 Physical scales

The purpose of this short section is to summarize the most popular scales and give a short
discussion of their advantages and disadvantages. We restrict ourselves to those used in more
recent computations and thus have a rather short list.

4This procedure unavoidably requires that one provides a value for the CKM matrix element Vud that has
then to be considered an input of the lattice calculation and not a predictable quantity.
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11.4.1 The mass of the Ω baryon

As already discussed, masses of hadrons that are stable in QCD+QED and have a small width,
in general, are very good candidates for physical scales since there are no QED infrared di-
vergences to be discussed. Furthermore, remaining within this class, the radiative corrections
δMQCD

i , Eq. (475), are expected to be small. Furthermore, the Ω baryon has a significantly
better noise/signal ratio than the nucleon (see Fig. 50). It also has little dependence on up-
and down-quark masses, since it is composed entirely of strange valence quarks.

Still, one has to be aware that the mass is not extracted from the plateau region but from
a modelling of the approach to a plateau in the form of fits [3, 31–33, 39, 40]. In this sense, the
noise/signal ratio problem may persist. The use of various interpolating fields for the Ω helps
in constraining such analyses, but it would be desirable to have a theoretical understanding
of multi-hadron (or in QCD+QED multi-hadron + photon) contributions as it exists for the
nucleon [41] as discussed in Sec. 10. In the present review, we take the estimates of the
collaborations at face value and do not try to apply a rating or an estimate of systematic
error due to excited-state contributions.

11.4.2 Pion and kaon leptonic decay rates

These decay rates have been discussed above. Here, we just summarize the main issues. In
QCD+QED there is so far only one computation of the decay rate in the electro-quenched
approximation [13]. The derived estimate for the radiative corrections agrees with the esti-
mates from chiral perturbation theory (see Eqs. (486) and (487)). The quoted uncertainties
are at the level of 0.001. This directly sets a limit to the achievable precision on the scale in
isoQCD. At present, this limit is not yet relevant. A second source of uncertainty is due to
the knowledge of Vud and Vus. For convenience, we summarize the isoQCD values

f isoQCD
π |Vud| = 127.13(2)exp(13)QED MeV , (490)

f isoQCD
π = 130.56(2)exp(13)QED(2)Vud MeV , (491)

f isoQCD
K |Vus| = 35.09(4)exp(4)QED MeV , (492)

f isoQCD
K = 157.2(2)exp(2)QED(4)Vus MeV , (493)

where we have used the PDG values [15] for fx|Vy| (equivalent to Eqs. (486) and (487)), and
the values

Vud = 0.97370(14) , Vus = 0.2232(6) .

Here, Vud is from the PDG [15] (beta decays) and the latter from Sec. 4 (f+(0) for Nf =
2 + 1 + 1). Of course, the information on pion and kaon leptonic decays do not enter the
determinations of Vud and Vus used here. The uncertainties in the above values are in the
following assumed to have been considered in the estimates of the scale given by the collabo-
rations. This is analogous to the systematics due to excited-state contaminations in hadron
masses, an issue which is irrelevant in the pseudoscalar channel (see Fig. 50).

Depending on the lattice formulation, there is also a nontrivial renormalization of the
axial current. Since it is easily determined from a chiral Ward identity, it does not play an
important rôle. When it is present, it is assumed to be accounted for in the statistical errors.
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11.4.3 Other physics scales

Scales derived from bottomonium have been used in the past, in particular, the splitting
∆mΥ = mΥ(2s) −mΥ(1s). They have very little dependence on the light-quark masses, but
need an input for the b-quark mass. In all relevant cases, the b quark is treated by NRQCD.

11.5 Theory scales

In the following, we consider in more detail the two classes of theory scales that are most
commonly used in typical lattice computations. The first class consists of scales related to
the static quark-antiquark potential [12]. The second class is related to the action density
renormalized through the gradient flow [42].

11.5.1 Potential scales

In this approach, lattice scales are derived from the properties of the static quark-antiquark
potential. In particular, a scale can be defined by fixing the force F (r) between a static quark
and antiquark separated by the distance r in physical units [12]. Advantages of using the
potential include the ease and accuracy of its computation, and its mild dependence on the
valence-quark mass. In general, a potential scale rc can be fixed through the condition that
the static force takes a predescribed value, i.e.,

r2
cF (rc) = Xc (494)

where Xc is a suitably chosen number. Phenomenological and computational considerations
suggest that the optimal choice for Xc is in the region where the static force turns over from
Coulomb-like to linear behaviour and before string breaking occurs. In the original work [12],
it was suggested to use X0 = 1.65 leading to the condition

r2
0F (r0) = 1.65 . (495)

In Ref. [43], the value X1 = 1.0 was proposed yielding the scale r1.
The static force is the derivative of the static quark-antiquark potential V (r) which can

be determined through the calculation of Wilson loops. More specifically, the potential at
distance r is extracted from the asymptotic time dependence of the r × t-sized Wilson loops
W (r, t),

V (r) = − lim
t→∞

d

dt
log〈W (r, t)〉 . (496)

The derivative of the potential needed for the force is then determined through the derivative
of a suitable local parameterization of the potential as a function of r, e.g.,

V (r) = C−
1

r
+ C0 + C+r , (497)

estimating uncertainties due to the parameterization. In some calculations, the gauge field
is fixed to Coulomb or temporal gauge in order to ease the computation of the potential at
arbitrary distances.

In order to optimize the overlap of the Wilson loops with the ground state of the potential,
one can use different types and levels of spatial gauge field smearing and extract the ground
state energy from the corresponding correlation matrix by solving a generalized eigenvalue

11 Updated Feb. 2023

http://arxiv.org/abs/2111.09849


Y. Aoki et al. FLAG Review 2021 2111.09849

problem [44–46]. Finally, one can also make use of the noise reduction proposed in Refs. [47,
48]. It changes the definition of the discretized loops by a smearing of the temporal parallel
transporter [49] and thus yields a different discretization of the continuum force.

11.5.2 Gradient flow scales

The gradient flow Bµ(t, x) of gauge fields is defined in the continuum by the flow equation

Ḃµ = DνGνµ, Bµ|t=0 = Aµ , (498)

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ], Dµ = ∂µ + [Bµ, · ] , (499)

where Aµ is the fundamental gauge field, Gµν the field strength tensor, and Dµ the covariant
derivative [42]. At finite lattice spacing, a possible form of Eqs. (498) and (499) is

a2 d

dt
Vt(x, µ) = −g2

0 · ∂x,µSG(Vt) · Vt(x, µ) , (500)

where Vt(x, µ) is the flow of the original gauge field U(x, µ) at flow time t, SG is an arbitrary
lattice discretization of the gauge action, and ∂x,µ denotes the su(3)-valued differential op-
erator with respect to Vt(x, µ). An important point to note is that the flow time t has the
dimension of a length squared, i.e., t ∼ a2, and hence provides a means for setting the scale.

One crucial property of the gradient flow is that any function of the gauge fields evaluated
at flow times t > 0 is renormalized [50] by just renormalizing the gauge coupling. Therefore,
one can define a scale by keeping a suitable gluonic observable defined at constant flow time t,
e.g., the action density E = −1

2 TrGµνGµν [42], fixed in physical units. This can, for example,
be achieved through the condition

t2c〈E(tc, x)〉 = c , E(t, x) = −1

2
TrGµν(t, x)Gµν(t, x) (501)

where Gµν(t, x) is the field strength tensor evaluated on the flown gauge field Vt. Then, the
lattice scale a can be determined from the dimensionless flow time in lattice units, t̂c = a2tc.
The original proposal in [42] was to use c = 0.3 yielding the scale t0,

t20〈E(t0)〉 = 0.3 . (502)

For convenience one sometimes also defines s0 =
√
t0.

An alternative scale w0 has been introduced in Ref. [39]. It is defined by fixing a suitable
derivative of the action density,

W (tc) = tc · ∂t
(
t2〈E(t)〉

)
t=tc

= c . (503)

Setting c = 0.3 yields the scale w0 through

W (w2
0) = 0.3 . (504)

In addition to the lattice scales from t0 and w0, one can also consider the scale from
the dimensionful combination t0/w0. This combination has been found to have a very weak
dependence on the quark mass [51–53].

A useful property of the gradient flow scales is the fact that their quark-mass dependence
is known from χPT [54].
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Since the action density at t ∼ t0 ∼ w2
0 usually suffers from large autocorrelation [51, 55],

the calculation of the statistical error needs special care.
Lattice artefacts in the gradient flow scales originate from different sources [56], which are

systematically discussed by considering t as a coordinate in a fifth dimension. First, there is
the choice of the action SG for t > 0. Second, there is the discretization of E(t, x). Third,
there is the discretization of the 4-dimensional quantum action, which is always there, and
fourth, there are also terms localized at the boundary t = 0+. The interplay between the
different sources of lattice artefacts turns out to be rather subtle [56].

Removing discretization errors due to the first two sources requires only classical (g0-
independent) improvement. Those due to the quantum action are common to all t = 0
observables, but the effects of the boundary terms are not easily removed in practice. At tree
level, the Zeuthen flow [56] does the complete job, but none of the computations reviewed here
have used it. Discretization effects due to SG can be removed by using an improved action
such as the tree-level Symanzik-improved gauge action [39, 57]. More phenomenological
attempts of improving the gradient flow scales consist of applying a t-shift [58], or tree-level
improvement [59].

11.5.3 Other theory scales

The MILC collaboration has been using another set of scales, the partially quenched pseu-
doscalar decay constant fp4s with degenerate valence quarks with a mass mq = 0.4 ·mstrange,
and the corresponding partially quenched pseudoscalar mass Mp4s. So far it has been a quan-
tity only used by the MILC collaboration [60–62]. We do not perform an in-depth discussion
or an average but will list numbers in the results section.

Yet another scale that has been used is the leptonic decay constant of the ηs. This fictitious
particle is a pseudoscalar made of a valence quark-antiquark pair with different (fictitious)
flavours which are mass-degenerate with the strange quark [63–65].

11.6 List of computations and results

11.6.1 Gradient flow scales

We now turn to a review of the calculations of the gradient flow scales
√
t0 and w0. The

results are compiled in Tab. 76 and shown in Fig. 51. In the following, we briefly discuss the
calculations in the order that they appear in the table and figure.

ETM 21 [53] finalizes and supersedes ETM 20 discussed below. It determines the scales√
t0, w0, also t0/w0 = 0.11969(62) fm, and the ratio

√
t0/w0 = 0.82930(65), cf. also HPQCD

13A [68]. Since ETM 21 is now published, the values replace the ones of ETM 20 in the
FLAG averages given in this web update.

CalLat 20A [31] use Möbius Domain-Wall valence fermions on HISQ ensembles generated
by the MILC and CalLat collaborations. The gauge fields entering the Möbius Domain-Wall
operator are gradient-flow smeared with t = a2. They compute the Ω mass and the scales
w0, t0 and perform global fits to determine w0MΩ and

√
t0MΩ at the physical point. The

flow is discretized with the Symanzik tree-level improved action and the clover discretization
of E(t) is used. A global fit with Bayesian priors is performed including terms derived from
χPT for finite volume and quark-mass dependences, as well as a2 and a2αs(1.5/a) terms for
discretization errors. Also, a tree-level improved definition of the GF scales is used where the
leading-in-g2 cutoff effects are removed up to and including O(a8/t4).
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√
t0 [fm] w0 [fm]

ETM 21 [53] 2+1+1 A F F F fπ 0.14436(61) 0.17383(63)
CalLat 20A [31] 2+1+1 A F F F mΩ 0.1422(14) 0.1709(11)
BMW 20 [3] 1+1+1+1 A F F F mΩ 0.17236(29)(63)[70]
ETM 20 [1053] 2+1+1 C F F F fπ 0.1706(18)

MILC 15 [67] 2+1+1 A F F F Fp4s(fπ)# 0.1416(+8/-5) 0.1714(+15/-12)
HPQCD 13A [68] 2+1+1 A F ◦ F fπ 0.1420(8) 0.1715(9)

RQCD 22 [69] 2+1 P F F F mΞ 0.1449(+7/-9)
CLS 21 [70] 2+1 C F F F fπ, fK 0.1443(7)(13)
CLS 16 [71] 2+1 A ◦ F F fπ, fK 0.1467(14)(7)

QCDSF/UKQCD 15B [72] 2+1 P ◦ ◦ ◦ m
SU(3)
P 0.1511(22)(6)(5)(3) 0.1808(23)(5)(6)(4)

RBC/UKQCD 14B [32] 2+1 A F F F mΩ 0.14389(81) 0.17250(91)

HotQCD 14 [73] 2+1 A F F F r1(fπ)# 0.1749(14)
BMW 12A [39] 2+1 A F F F mΩ 0.1465(21)(13) 0.1755(18)(4)

Table 76: Results for gradient flow scales at the physical point, cf. Eq. (469). Note that BMW
20 [3] take IB and QED corrections into account. Some additional results for ratios of scales
are:
ETM 21 [53]: t0/w0 = 0.11969(62) fm.
# These scales are not physical scales and have been determined from fπ.

BMW 20 [3] presents a result for w0 in the context of their staggered fermion calculation
of the muon anomalous magnetic moment. It is the first computation that takes QED and
isospin-breaking corrections into account. The simulations are performed by using staggered
fermions with stout gauge field smearing with six lattice spacings and several pion masses
around the physical point with Mπ between 110 and 140 MeV. Volumes are around L = 6 fm.
At the largest lattice spacing, it is demonstrated how the effective masses of the Ω correlator
almost reach the plateau value extracted from a four-state fit (two states per parity). Within
the range where the data is fitted, the deviation of data points from the estimated plateau is
less than a percent. Isospin-breaking corrections are computed by Taylor expansion around
isoQCD with QED treated as QEDL. Finite volume effects in QED are taken from the
1/L, 1/L2 universal corrections and O(1/L3) effects are neglected. The results for MΩw0 are
extrapolated to the continuum by a fit with a2 and a4 terms.

ETM 20 [1053] presents in their proceedings contribution a preliminary analysis of their
Nf = 2 + 1 + 1 Wilson twisted-mass fermion simulations at maximal twist (i.e., automatic
O(a) improved), at three lattice spacings and pion masses at the physical point. Their
determination of w0 = 0.1706(18) fm from fπ using an analysis in terms of Mπ is the value
quoted above. They obtain the consistent value w0 = 0.1703(18) fm from an analysis in terms
of the renormalized light quark mass.

MILC 15 [67] sets the physical scale using the fictitious pseudoscalar decay constant
Fp4s=153.90(9)(+21/ − 28) MeV with degenerate valence quarks of mass mv = 0.4ms and
physical sea-quark masses [62]. (Fp4s has strong dependence on the valence-quark mass and
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is determined from fπ.) They use a definition of the flow scales where the tree-level lattice
artefacts up to O(a4/t2) are divided out. Charm-quark mass mistunings are between 1% and

11%. They are taken into account at leading order in 1/mc through Λ
(3)
QCD applied directly

to Fp4s and 1/mc corrections are included as terms in the fits. They use elaborate variations
of fits in order to estimate extrapolation errors (both in GF scales and Fp4s). They include
errors from FV effects and experimental errors in fπ in Fp4s.

HPQCD 13A [68] uses eight MILC-HISQ ensembles with lattice spacings a = 0.088, 0.121,
0.151 fm. Values of L are between 2.5 fm and 5.8 fm with MπL = 3.3–4.6. Pion masses range
between 128 and 306 MeV. QCD is defined by using the inputs Mπ = 134.98(32) MeV,
MK = 494.6(3) MeV, fπ+ = 130.4(2) MeV derived by model subtractions of IB effects.
Additional scale ratios are given:

√
t0/w0 = 0.835(8), r1/w0 = 1.789(26).

RQCD 22 [69] is an independent analysis of CLS ensembles employing Nf = 2 + 1 non-
perturbatively improved Wilson fermions and the tree-level Symanzik improved gauge action.
It uses a multitude of quark-mass combinations at six different values of the lattice spacing,
ranging from a . 0.098 fm down to a < 0.039 fm. Near-physical quark masses are realized at
a = 0.064 fm and a = 0.085 fm. The input quantities used to fix the physical point and to
set the scale are Mπ = 134.8(3) MeV, MK = 494.2(3) MeV, and mΞ = 1316.9(3) MeV (last
line of pg. 33 in [69]). Since RQCD 22 is not yet published at the time of this web update,
the result for

√
t0 is not included in the FLAG average.

CLS 21 [70] is a proceedings contribution describing a preliminary analysis following the
one in CLS 16 [71], cf. the description below. CLS 21 includes about double the amount
of ensembles as compared to CLS 16, in particular ensembles at two more lattice spacings
and two ensembles at the physical point. As a consequence, this analysis is not considered a
straightforward update and hence does not supersede the result of CLS 16.

CLS 16 [71] uses CLS configurations of 2+1 nonperturbatively O(a)-improved Wilson
fermions. There are a few pion masses with the strange mass adjusted along a line of mu +
md+ms = const. Three different lattice spacings are used. They determine t0 at the physical
point defined by π and K masses and the linear combination fK + 1

2fπ. They use the Wilson
flow with the clover definition of E(t).

QCDSF 15B [72, 74] results, unpublished, are obtained by simulating Nf = 2 + 1 QCD
with the tree-level Symanzik improved gauge action and clover Wilson fermions with single
level stout smearing for the hopping terms together with unsmeared links for the clover term
(SLiNC action). Simulations are performed at four different lattice spacings, in the range
[0.06, 0.08] fm, with Mπ,min = 228 MeV and Mπ,minL = 4.1. The results for the gradient flow
scales have been obtained by relying on the observation that flavour-symmetric quantities get
corrections of O((∆mq)

2) where ∆mq is the difference of the quark mass from the SU(3)-
symmetric value. The O(∆m2

q) terms are not detected in the data and subsequently neglected.
RBC/UKQCD 14B [32] presents results for

√
t0 and w0 obtained in QCD with 2 + 1

dynamical flavours. The simulations are performed by using domain-wall fermions on six
ensembles with lattice spacing a−1 = 1.38, 1.73, 1.78, 2.36, 2.38, and 3.15 GeV, pion masses
in the range Munitary

π ∈ [139, 360] MeV. The simulated volumes are such that MπL > 3.9.
The effective masses of the Ω correlator are extracted with two-state fits and it is shown, by
using two different nonlocal interpolating operators at the source, that the correlators almost
reach a pleateau. In the calculation of

√
t0 and w0, the clover definition of E(t) is used. The

values given are
√
t0 = 0.7292(41) GeV−1 and w0 = 0.8742(46) GeV−1 which we converted to

the values in Tab. 76.

15 Updated Feb. 2023

http://arxiv.org/abs/2111.09849


Y. Aoki et al. FLAG Review 2021 2111.09849

0.135 0.140 0.145 0.150

=
+

+
=

+

fm

BMW 12A

RBC/UKQCD 14B

QCDSF/UKQCD 15

CLS 16

CLS 21

RQCD 22

FLAG average

HPQCD 13A

MILC 15

CalLat 20A

ETM 21

FLAG average

0.165 0.170 0.175 0.180

=
+

+
=

+

fm

BMW 12A

HotQCD 14

RBC/UKQCD 14B

QCDSF/UKQCD 15

FLAG average

HPQCD 13A

MILC 15

ETM 20

BMW 20

CalLat 20A

ETM 21

FLAG average

Figure 51: Results for gradient flow scales.

HotQCD 14 [73] determines the equation of state with Nf = 2+1 flavours using highly im-
proved staggered quarks (HISQ/tree). As a byproduct, they update the results of HotQCD
11 [75] by adding simulations at four new values of β, for a total of 24 ensembles, with
lattice spacings in the range [0.04, 0.25] fm and volumes in the range [2.6, 6.1] fm with
Mπ = 160 MeV. They obtain values for the scale parameters r0 and w0, via the ratios
r0/r1, w0/r1 and using r1 = 0.3106(14)(8)(4) fm from MILC 10 [76]. They obtain for the
ratios (r0/r1)cont = 1.5092(39) and (w0/r1)cont = 0.5619(21) in the continuum. They cross-
check their determination of the scale r1 using the hadronic quantities fK , fη from HPQCD
09B [64] and the experimental value of Mϕ, and find good agreement.

BMW 12A [39] is the work in which w0 was introduced. Simulations with 2HEX smeared
Wilson fermions and two-level stout-smeared rooted staggered fermions are done. The Wilson
flow with clover E(t) is used, and a test of the Symanzik flow is carried out. They take the
results with Wilson fermions as their central value, because those “do not rely on the ‘rooting’
of the fermion determinant”. Staggered fermion results agree within uncertainties.

11.6.2 Potential scales

We now turn to a review of the calculations of the potential scales r0 and r1. The results are
compiled in Tab. 77 and shown in Fig. 52. The most recent calculations date back to 2014,
and we discuss them in the order that they appear in the table and the figure.

ETM 14 [34] uses Nf = 2 + 1 + 1 Wilson twisted-mass fermions at maximal twist (i.e.,
automatic O(a)-improved), three lattice spacings and pion masses reaching down to Mπ = 211
MeV. They determine the scale r0 through fπ = fπ+ = 130.41 MeV. A crosscheck of the so
obtained lattice spacings with the ones obtained via the fictitious pseudoscalar meson Ms′s′

made of two strange-like quarks gives consistent results. The crosscheck is done using the
dimensionless combinations r0Ms′s′ (with r0 in the chiral limit) and fπ/Ms′s′ determined in
the continuum, and then using r0/a and the value of Ms′s′ obtained from the experimental
value of fπ. We also note that in Ref. [51] using the same ensembles the preliminary value
w0 = 0.1782 fm is determined, however, without error due to the missing or incomplete
investigation of the systematic effects.
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r0 [fm] r1 [fm]

ETM 14 [34] 2+1+1 A ◦ F F fπ 0.474(14)
HPQCD 13A [68] 2+1+1 A F ◦ F fπ 0.3112(30)
HPQCD 11B [63] 2+1+1 A ◦ ◦ ◦ ∆MΥ, fηs 0.3209(26)

HotQCD 14 [73] 2+1 A F F F r1([76])# 0.4688(41)
χQCD 14 [77] 2+1 A ◦ ◦ ◦ three inputs5 0.465(4)(9)
HotQCD 11 [75] 2+1 A F F F fπ 0.468(4)
RBC/UKQCD 10A [40] 2+1 A ◦ ◦ ◦ MΩ 0.487(9) 0.333(9)
MILC 10 [76] 2+1 C ◦ F F fπ 0.3106(8)(14)(4)
MILC 09 [78] 2+1 A ◦ F F fπ 0.3108(15)(+26

−79)
MILC 09A [35] 2+1 C ◦ F F fπ 0.3117(6)(+12

−31)
HPQCD 09B [64] 2+1 A ◦ F ◦ three inputs 0.3133(23)(3)
PACS-CS 08 [33] 2+1 A F � � MΩ 0.4921(64)(+74

−2 )
HPQCD 05B [65] 2+1 A ◦ ◦ ◦ ∆MΥ 0.469(7) 0.321(5)
Aubin 04 [79] 2+1 A ◦ ◦ ◦ ∆MΥ 0.462(11)(4) 0.317(7)(3)

Table 77: Results for potential scales at the physical point, cf. Eq. (469). ∆MΥ = MΥ(2s) −
MΥ(1s).
# This theory scale was determined in turn from r1 [76].

HPQCD 13A [68] was already discussed above in connection with the gradient flow scales.
HPQCD 11B [63] uses five MILC-HISQ ensembles and determines r1 from MΥ(2s)−MΥ(1s)

and the decay constant fηs (see HPQCD 09B). The valence b quark is treated by NRQCD,
while the light valence quarks have the HISQ discretization, identical to the sea quarks.

HotQCD 14 [73] was already discussed in connection with the gradient flow scales.
χQCD 14 [77] uses overlap fermions as valence quarks on Nf = 2 + 1 domain-wall fermion

gauge configurations generated by the RBC/UKQCD collaboration [40]. Using the physical
masses of Ds, D

∗
s and J/ψ as inputs, the strange and charm quark masses and the decay

contant fDs are determined as well as the scale r0.
HotQCD 11 [75] uses configurations with tree-level improved Symanzik gauge action and

HISQ staggered quarks in addition to previously generated ensembles with p4 and asqtad
staggered quarks. In this calculation, QCD is defined by generating lines of constant physics
with ml/ms = {0.2, 0.1, 0.05, 0.025} and setting the strange quark mass by requiring that

the mass of a fictious ηss̄ meson is Mηss̄ =
√

2M2
K −M2

π . The physical point is taken to be

at ml/ms = 0.037. The physical scale is set by using the value r1 = 0.3106(8)(18)(4) fm
obtained in Ref. [76] by using fπ as physical input. In the paper, this result is shown to be
consistent within the statistical and systematic errors with the choice of fK as physical input.
The result r0/r1 = 1.508(5) is obtained by averaging over 12 ensembles at ml/ms = 0.05 with
lattice spacings in the range [0.066, 0.14] fm. This result is then used to get r0 = 0.468(4) fm.
Finite volume effects have been monitored with 20 ensembles in the range [3.2, 6.1]fm with
MπL > 2.6.

RBC/UKQCD 10A [40] uses Nf = 2 + 1 flavours of domain-wall quarks and the Iwasaki
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gauge action at two values of the lattice spacing with unitary pion masses in the approximate
range [290, 420] MeV. They use the masses of π and K meson and of the Ω baryon to determine
the physical quark masses and the lattice spacings, and so obtain estimates of the scales r0, r1

and the ratio r1/r0 from a combined chiral and continuum extrapolation.
MILC 10 [76] presents a further update of r1 with asqtad staggered quark ensembles with

a ∈ {0.045, 0.06, 0.09} fm. It supersedes MILC 09 [35, 78, 80].
MILC 09 [78] presents an Nf = 2+1 calculation of the potential scales on asqtad staggered

quark ensembles with a ∈ {0.045, 0.06, 0.09, 0.12, 0.15, 0.18} fm. The continuum extrapolation
is performed by using Goldstone boson pions as light as Mπ = 224 MeV (RMS pion mass
of 258 MeV). The physical scale is set from fπ. The result for r1 obtained in the published
paper [78] is then updated and, therefore, superseded by the conference proceedings MILC
09A and 09B [35, 80].

HPQCD 09B [64] is an extension of HPQCD 05B [65] and uses HISQ valence quarks
instead of asqtad quarks. The scale r1 is obtained from three different inputs. First r1 =
0.309(4) fm from the splitting of 2S and 1S Υ states as in Ref. [65], second r1 = 0.316(5) fm
from MDs − Mηs/2 and third r1 = 0.315(3) fm from the decay constant of the ηs. The
ficitious ηs state is operationally defined by setting quark masses to the s-quark mass and
dropping disconnected diagrams. Its mass and decay constant are obtained from a partially
quenched chiral perturbation theory analysis using the pion and kaon states from experiment
together with various partially quenched lattice data. The three results are combined to
r1 = 0.3133(23)(3) fm.

PACS-CS 08 [33] presents a calculation of r0 in Nf = 2 + 1 QCD by using NP O(a)-
improved clover Wilson quarks and Iwasaki gauge action. The calculation is done at fixed
lattice spacing a = 0.09 fm and is extrapolated to the physical point from (unitary) pion
masses in the range [156, 702] MeV. The Nf = 2 + 1 theory is defined by fixing Mπ, MK , and
MΩ to 135.0, 497.6, and 1672.25 MeV, respectively. The effective masses of smeared-local Ω
correlators averaged over the four spin polarizations show quite good plateaux.

HPQCD 05B [65] performed the first bottomonium spectrum calculation in full QCD
with Nf = 2 + 1 on MILC asqtad configurations and the b quark treated by NRQCD. They
find agreement of the low lying Υ states with experiment and also compare to quenched and
Nf = 2 results. They determined r0 and r1 from the splitting of 2S and 1S states.

Aubin 04 [79] presents an Nf = 2 + 1 calculation of the potential scales by using asqtad
staggered quark ensembles with a = 0.09 and 0.12} fm. The continuum extrapolation is
performed by using Goldstone boson pions as light as mπ = 250 MeV. The physical scale is
set from the Υ 2S-1S and 1P-1S splittings computed with NRQCD by HPQCD [81].

11.6.3 Ratios of scales

It is convenient in many cases to also have ratios of scales at hand. In addition to trans-
lating from one scale to another, the ratios provide important crosschecks between different
determinations. Results on ratios provided by the collaborations are compiled in Tab. 78 and
Fig. 53. The details of the computations were already discussed in the previous sections.
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Figure 52: Results for potential scales.
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√
t0/w0 r0/r1 r1/w0

ETM 21 [53] 2+1+1 A F F F 0.82930(65)
HPQCD 13A [68] 2+1+1 A F ◦ F 0.835(8) 1.789(26)

HotQCD 14 [73] 2+1 A F F F 1.7797(67)
HotQCD 11 [75] 2+1 A F F F 1.508(5)

RBC/UKQCD 10A [40] 2+1 A ◦ ◦ ◦ 1.462(32)#

Aubin 04 [79] 2+1 A ◦ ◦ ◦ 1.474(7)(18)

Table 78: Results for dimensionless ratios of scales.
#This value is obtained from r1/r0 = 0.684(15)(0)(0).
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Figure 53: Results for dimensionless ratios of scales.
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11.7 Averages

Gradient flow scale
√
t0

For Nf = 2+1+1, we have two recent calculations from ETM 21 [53] and CalLat 20A [31],
and two less recent ones from MILC 15 [67] and HPQCD 13A [68] fulfilling the FLAG criteria
to enter the average. The latter two and CalLat 20A are based on the same MILC-HISQ
gauge field ensembles, hence we consider their statistical errors to be 100% correlated.

For Nf = 2+1, we have three calculations from CLS 16 [71], RBC/UKQCD 14B [32], and
BMW 12A [39] which enter the FLAG average. All three are independent computations, so
there is no correlation to be taken into account. QCDSF/UKQCD 15B [72] does not contribute
to the average, because it is not published. CLS 21 [70] is a proceedings contribution based
on double the number of ensembles. It is therefore not a straightforward update and does
not supersede CLS 16 [71]. The new result by RQCD 22 [69] was not published by the date
of this web update, January 2023, and is also not yet included in the average.

Performing the weighted and correlated average we obtain

Nf = 2 + 1 + 1 :
√
t0 = 0.14292(104) fm Refs. [31, 53, 67, 68], (505)

Nf = 2 + 1 :
√
t0 = 0.14464(87) fm Refs. [32, 39, 71]. (506)

We note that the Nf = 2 + 1 + 1 results of staggered fermions and the twisted-mass result are
not well compatible. The resulting stretching factor based on the χ2 value from the weighted
average for Nf = 2 + 1 + 1 is 1.81. It causes the error of this web update to be increased
compared to FLAG 21. For the Nf = 2 + 1 average the stretching factor is 1.25. We hope
that the differences for Nf = 2 + 1 + 1 get resolved in the near future and the uncertainty of
the average decreases.

Gradient flow scale w0

For Nf = 1 + 1 + 1 + 1, including QED, there is a single calculation, BMW 20 [3] with
the result

Nf = 1 + 1 + 1 + 1 + QED : w0 = 0.17236(70) fm Ref. [3]. (507)

For Nf = 2 + 1 + 1 we now have four calculations ETM 21 [53], CalLat 20A [31], MILC
15 [67], and HPQCD 13A [68] entering the FLAG average. The proceedings ETM 20 is
superseded by ETM 21. As discussed above in connection with

√
t0 we correlate the statistical

errors of CalLat 20A, MILC 15, and HPQCD 13A.
For Nf = 2 + 1, we have three calculations RBC/UKQCD 14B [32], HotQCD 14 [73], and

BMW 12A [39] that enter the FLAG average. These calculations are independent, and no
correlation needs to be taken into account. QCDSF/UKQCD 15B [72] does not contribute
to the average, because it is not published.

Performing the weighted and correlated average, we obtain

Nf = 2 + 1 + 1 : w0 = 0.17256(103) fm Refs. [31, 53, 67, 68], (508)

Nf = 2 + 1 : w0 = 0.17355(92) fm Refs. [32, 39, 73]. (509)

As above Nf = 2+1+1 results of staggered fermions and the twisted-mass result are not well
compatible. The resulting stretching factor based on the χ2 value from the weighted average
is 1.67. It causes the error of this web update to be slightly increased compared to FLAG
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21. For the Nf = 2 + 1 average the stretching factor is 1.23. We hope that the differences for
Nf = 2 + 1 + 1 get resolved in the near future and the uncertainty of the average decreases.

Isospin-breaking and electromagnetic corrections are expected to be small at the level
of present uncertainties. This is also confirmed by the explicit computation by BMW 12A.
Therefore, we also perform an average over all Nf > 2 + 1 computations and obtain

Nf > 2 + 1 : w0 = 0.17250(70) fm Refs. [3, 31, 53, 67, 68]. (510)

For the Nf > 2 + 1 average the rescaling factor is 1.45.

Gradient flow scale t0/w0

Currently, there is only one calculation of the scale t0/w0 available from ETM 21 [53]
which forms the FLAG average

Nf = 2 + 1 + 1 : t0/w0 = 0.11969(62) fm Ref. [53]. (511)

Potential scale r0

For Nf = 2 + 1 + 1, there is currently only one determination of r0 from ETM 14 [34],
namely r0 = 0.474(14) fm, which, therefore, represents the FLAG average.

For Nf = 2 + 1, all but one calculation fulfill all the criteria to enter the FLAG average.
HotQCD 14 [73] is essentially an update of HotQCD 11 [75] by enlarging the set of ensembles
used in the computation. Therefore, the result from HotQCD 14 supersedes the one from
HotQCD 11 and, hence, we only use the former in the average. The computation of χQCD
[77] is based on the configurations produced by RBC/UKQCD 10A [40], and we, therefore,
assume a 100% correlation between the statistical errors of the two calculations. HPQCD
05B [65] enhances the calculation of Aubin 04 [79] by adding ensembles at a coarser lattice
spacing and using the same discretization for the valence fermion. Therefore, we consider the
full errors (statistical and systematic) on the results from Aubin 04 and HPQCD 05B to be
100% correlated.

Performing the weighted and correlated average, we obtain

Nf = 2 + 1 + 1 : r0 = 0.474(14) fm Ref. [34], (512)

Nf = 2 + 1 : r0 = 0.4701(36) fm Refs. [40, 65, 73, 77, 79]. (513)

We note that for the Nf = 2 + 1 average, the stretching factor based on the χ2-value from
the weighted average is 1.14.

Potential scale r1

For Nf = 2+1+1, there are two works that fulfill the criteria to enter the FLAG average,
namely HPQCD 13A [68] and HPQCD 11B [63]. Both are based on MILC-HISQ ensembles,
the former uses eight, the latter only five. The result from HPQCD 13A supersedes the result
from HPQCD 11B (in line with a corresponding statement in HPQCD 13A) and forms the
FLAG average.

For Nf = 2 + 1, all the results quoted in Tab. 77 fulfill the FLAG criteria, but not all of
them enter the average. The published result from MILC 09 [78] is superseded by the result
in the proceedings MILC 10 [76], while MILC 09A [35] is a proceedings contribution and
does not enter the average. HPQCD 09B [64] uses HISQ valence quarks instead of asqtad
valence quarks as in HPQCD 05B [65]. Therefore, we have RBC/UKQCD 10A [40], MILC
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10, HPQCD 09B, HPQCD 05B, and Aubin 04 entering the average. However, since the latter
four calculations are based on the aqtad MILC ensembles, we attribute 100% correlation
on the statistical error between them and 100% correlation on the systematic error between
HPQCD 05B and Aubin 04 as discussed above in connection with r0.

Performing the weighted and correlated average, we obtain

Nf = 2 + 1 + 1 : r1 = 0.3112(30) fm Ref. [68], (514)

Nf = 2 + 1 : r1 = 0.3127(30) fm Refs. [40, 64, 65, 76, 79]. (515)

We note that for the Nf = 2 + 1 average the stretching factor based on the χ2-value from the
weighted average is 1.57.

The scales Mp4s and fp4s
As mentioned in Sec. 11.5.3, these scales have been used only by the MILC and FNAL/MILC

collaborations [60–62]. The latest numbers from Ref. [61] are f4ps = 153.98(11)(+2
−12)(12)[4]

MeV and Mp4s = 433.12(14)(+17
−6 )(4)[40] MeV and, hence, we have

Nf = 2 + 1 + 1 : f4ps = 153.98(20) MeV Ref. [61], (516)

Nf = 2 + 1 + 1 : M4ps = 433.12(30) MeV Ref. [61]. (517)

Dimensionless ratios of scales
We start with the ratio

√
t0/w0 for which two Nf = 2 + 1 + 1 calculations from ETM 21

[53] and HPQCD 13A [68] are available and form the FLAG average

Nf = 2 + 1 + 1 :
√
t0/w0 = 0.82934(65) Refs. [53, 68]. (518)

We note that here the error is reduced compared to FLAG 21 by an order of magnitude due
to the very small error of ETM 21. It is further worth noting that the ETM 21 continuum
extrapolated value is many standard deviations away from the results at finite lattice spacings,
see Figs. 11-12 in Ref. [53].

For the ratio r0/r1 there are three calculations from HotQCD 11 [75], RBC/UKQCD 10A
[40], and Aubin 04 [79] available. They all fulfill the FLAG criteria and enter the FLAG
average of this ratio,

Nf = 2 + 1 : r0/r1 = 1.5049(74) Refs. [40, 75, 79]. (519)

We note that the stretching factor based on the χ2-value from the weighted average is 1.54.
Finally, for the ratio r1/w0 there is one computation from HotQCD 14 [73] for Nf =

2 + 1 + 1, and one from HPQCD 13A [68] for Nf = 2 + 1 fulfilling the FLAG criteria, and,
hence, forming the FLAG values

Nf = 2 + 1 + 1 : r1/w0 = 1.789(26) Ref. [68], (520)

Nf = 2 + 1 : r1/w0 = 1.7797(67) Ref. [73]. (521)

11.8 Observations and conclusions

Unfortunately the different computations for theory scales reported here are generally not in
good agreement within each set of 2+1+1 and 2+1 flavour content. As a measure we list here
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the stretching factors above one. We remind the reader that their squares are equal to the
χ2/dof of the weighted averages. Quantitatively, the stretching factors are for Nf = 2 + 1:
1.3 (for

√
t0), 1.2 (w0), 1.1 (r0), 1.6 (r1), 1.5 (r0/r1). For Nf = 2 + 1 + 1 the numbers are

larger: 1.8 (
√
t0), 1.7 (w0) and due to differences which exist between present days twisted-

mass QCD results and staggered results. Of course, the limited number of large-scale QCD
simulations that are available means that there are only a small number of truly independent
determinations of the scales. For example, three out of the five computations entering our
average for w0 are based on the same HISQ rooted staggered fermion configurations and thus
their differences are only due to the choice of the physical scale (mΩ vs. fπ), the valence quark
action (Möbius domain-wall valence fermions vs. staggered fermions) employed to compute it
and different analysis of continuum limit, etc.

Due to the publication of ETM 21, differences between Nf = 2 + 1 and 2+1+1 QCD are
now smaller and (within their errors) in agreement with expectations [82, 83]. The effect
of the charm quark is −0.6(8)% on w0 and −1.2(9)% on

√
t0 as computed from the FLAG

averages. Precision studies of the decoupling of charm quarks predicted generic effects of
a magnitude of only ≈ 0.2% [82, 83] for low energy quantities. Since the FLAG numbers
have changed quite a bit due to one more computation entering the averages, we are looking
forward to further and more precise results to see whether the numbers hold up over time.
In this respect, it is highly desirable for future computations to also publish ratios such as√
t0/w0 where numbers are rare so far.

Such ratios of gradient flow scales are also of high interest in order to better understand
the specific discretization errors of gradient flow observables. So far, systematic studies and
information on the different contributions (see Sec. 11.5.2 and Ref. [56]) are missing. A
worrying result is, for example, the scale-setting study of Ref. [84] on ratios of scales. The
authors find indications that the asymptotic ∼ a2 scaling does not set in before a ≈ 0.05 fm
and the a = 0.04 fm data has a relevant influence on their continuum extrapolations.

A final word concerns the physics scales that all results depend on. While the mass of
the Ω baryon is more popular than the leptonic decay rate of the pion, both have systematics
which are difficult to estimate. For the Ω baryon it is the contaminations by excited states
and for the decay rates it is the QED effects δf isoQCD

π . The uncertainty in Vud is not relevant
at this stage, but means that one is relying more on the standard model being an accurate low
energy theory than in the case of the Ω mass. In principle, excited state effects are controlled
by just going to large Euclidean time, but, in practice, this yields errors that are too large.
One, therefore, performs fits with a very small number of excitations while theoretically there
is a multitude of multi-hadron states that are expected to contribute. For the leptonic decay
rate of the pion, the situation is quite reversed, namely, the problematic QED contributions
have a well-motivated theory: chiral perturbation theory. The needed combination of low-
energy constants is not accessible from experiment but its large-N estimate [36] has been
(indirectly) confirmed by the recent computation of δf isoQCD

π [13]. Unfortunately the same
comparison is not so favourable for the leptonic Kaon decay.
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