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9.1 Introduction

The strong coupling αs(µ) = ḡs(µ)
2/(4π) defined at scale µ, is the parameter that deter-

mines the strength of strong interactions in the Standard Model. It plays a key role in the
understanding of QCD and in its application to collider physics, where it is ubiquitous in
calculations of physical processes, e.g., at the LHC. For example, the parametric uncertainty
from αs is one of the dominant sources of uncertainty in the Standard Model predictions for
the Higgs boson [1] and top quark cross sections, see, e.g., Ref. [2]. In order to fully exploit
the experimental results that will be collected during the high-luminosity run of the LHC
in the near future, it is mandatory to reduce the uncertainty on αs below 1%. Similarly,
high-accuracy determinations of this coupling will help in understanding the stability of the
vacuum of the Standard Model and will yield one of the essential boundary conditions for
completions of the Standard Model at high energies [3–10]. At this level of precision, it be-
comes imperative to have a robust understanding of systematic errors. Lattice simulations
are ideally placed to play a central role in this quest. In the following we try to summarize the
main features of the lattice approach in a way that we hope is understandable by nonexperts.
For recent, complementary review articles, we refer the reader to Refs. [11, 12].

In order to determine the running coupling at scale µ

αs(µ) =
ḡ2s(µ)

4π
, (285)

we should first “measure” a short-distance quantity Q at scale µ either experimentally or
by lattice calculations, and then match it to a perturbative expansion in terms of a running
coupling, conventionally taken as αMS(µ),

Q(µ) = c1αMS(µ) + c2αMS(µ)
2 + · · · . (286)

We note that in some cases also a lowest-order constant term, c0, may be present; in the fol-
lowing, we always assume that such a term has been subtracted on both sides and absorbed in
a re-definition of Q(µ). We distinguish between phenomenological and lattice determinations
of αs, the essential difference being the origin of the values of Q in Eq. (286). The basis
of phenomenological determinations are experimentally measurable cross sections or decay
widths from which Q is defined. These cross sections have to be sufficiently inclusive and at
sufficiently high scales such that perturbation theory can be applied. Often hadronization
corrections have to be used to connect the observed hadronic cross sections to the pertur-
bative ones. Experimental data at high µ, where perturbation theory is progressively more
precise, usually have increasing experimental errors, not least due to the very smallness of
αs(µ). Hence, it is not easy to find processes that allow one to follow the µ-dependence of
a single Q(µ) over a range where αs(µ) changes significantly and precision is maintained.
Note also that determinations of αs from experimental data at hadron colliders necessarily
require a simultaneous fit of the Parton Distribution Functions (PDFs) [13], making the whole
procedure more complicated and prone to systematic errors.
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In contrast, in lattice gauge theory, one can design Q(µ) Euclidean short-distance quan-
tities that are not directly related to experimental observables. This allows us to follow the
µ-dependence until the perturbative regime is reached and nonperturbative “corrections” are
negligible. The only experimental input for lattice computations of αs are the masses or decay
constants of hadrons, which fixes the overall energy scale of the theory and the quark masses.
Therefore, experimental errors are completely negligible and issues such as hadronization do
not occur. We can construct many short-distance quantities that are easy to calculate non-
perturbatively in lattice simulations with small statistical uncertainties. We can also simulate
at parameter values that do not exist in nature (for example, with unphysical quark masses
between bottom and charm) to help control systematic uncertainties. These features mean
that precise results for αs can be achieved with lattice-gauge-theory computations. Further,
as in phenomenological determinations, the different methods available to determine αs in
lattice calculations with different associated systematic uncertainties enable valuable cross-
checks. Practical limitations are discussed in the next section, but a simple one is worth
mentioning here. Experimental results (and therefore the phenomenological determinations)
of course have all quarks present, while in lattice gauge theories in practice only the lighter
ones are included and one is then forced to use the matching at thresholds, as discussed in
the following subsection.

It is important to keep in mind that the dominant source of uncertainty in most present
day lattice-QCD calculations of αs are from the truncation of continuum/lattice perturbation
theory and from discretization errors. Perturbative truncation errors are of particular concern
because they often cannot easily be estimated from studying the data itself. Perturbation
theory provides an asymptotic series and the size of higher-order coefficients can sometimes
turn out to be larger than suggested by naive expectations based on power counting from
the behaviour of lower-order terms. We note that perturbative truncation errors are also the
dominant source of uncertainty in several of the phenomenological determinations of αs.

The various phenomenological approaches to determining the running coupling constant,

α
(5)

MS
(MZ) are summarized by the Particle Data Group [14]. The PDG review lists five cat-

egories of phenomenological results used to obtain the running coupling: using hadronic τ
decays, hadronic final states of e+e− annihilation, deep inelastic lepton–nucleon scattering,
electroweak precision data, and high-energy hadron-collider data. Excluding lattice results,
the PDG, in their most recent update [15], quotes the weighted average as

α
(5)

MS
(MZ) = 0.1175(10) , PDG 2024 [15] (287)

compared to α
(5)

MS
(MZ) = 0.1176(11) of the older PDG 2020 [14]. For a general overview of the

various phenomenological and lattice approaches see, e.g., Ref. [2]. The extraction of αs from
τ data, which is one of the most precise and thus has a large impact on the nonlattice average
in Eq. (287), is especially sensitive to the treatment of higher-order perturbative terms as
well as the treatment of nonperturbative effects. This is important to keep in mind when

comparing our chosen range for α
(5)

MS
(MZ) from lattice determinations in Eq. (402) with the

nonlattice average from the PDG.
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9.1.1 Scheme and scale dependence of αs and ΛQCD

Despite the fact that the notion of the QCD coupling is initially a perturbative concept, the
associated Λ-parameter is nonperturbatively defined,

Λ ≡ µφs(ḡs(µ)),

φs(ḡs) = (b0ḡ
2
s)

−b1/(2b20)e−1/(2b0ḡ2s) exp

[
−
∫ ḡs

0
dx

(
1

β(x)
+

1

b0x3
− b1
b20x

)]
,

(288)

provided that β(ḡs) = µ∂ḡs(µ)
∂µ is the full renormalization group function in the (mass-

independent) scheme which defines ḡs. The first two coefficients, b0 and b1, in the perturbative
expansion

β(x) ∼ −b0x3 − b1x
5 + . . . , (289)

are scheme-independent (“universal”) and given by

b0 =
1

(4π)2

(
11− 2

3
Nf

)
, b1 =

1

(4π)4

(
102− 38

3
Nf

)
. (290)

In the MS scheme, the coefficients of the β-function have been calculated up to 5-loop order,
i.e., b2, b3 and b4 are known [16–20].

As a renormalization-group-invariant quantity, the Λ-parameter is µ-independent. How-
ever, it does depend on the renormalization scheme albeit in an exactly computable way: A
perturbative change of the coupling from one mass-independent scheme S to another (taken
here to be the MS scheme) takes the form

g2
MS

(µ) = g2S(µ)(1 + c(1)g g2S(µ) + . . .) , (291)

where c
(i)
g , i ≥ 1 are finite coefficients. Performing this change in the expression for the Λ-

parameter at a large scale µ, so that higher-order terms can be neglected, one obtains the
exact relation between the respective Λ-parameters of the two schemes,

ΛMS = ΛS exp
[
c(1)g /(2b0)

]
. (292)

Note that this exact relation allows us to nonperturbatively define ΛMS, by starting from any

nonperturbatively defined scheme S for which c
(1)
g is known. Given the high-order knowledge

(5-loop by now) of βMS then means that the errors in αMS(mZ) correspond almost completely
with the errors of ΛS . We will therefore mostly discuss them in that way. Starting from
Eq. (288), we have to consider (i) the error of ḡ2S(µ) (denoted as

(
∆Λ
Λ

)
∆αS

) and (ii) the

truncation error in βS (denoted as
(
∆Λ
Λ

)
trunc

). Concerning (ii), note that knowledge of c
(nl)
g

for the scheme S means that βS is known to nl + 1 loop order; bnl
is known. We thus see

that in the region where perturbation theory can be applied, the following errors of ΛS (or
consequently ΛMS) have to be considered(

∆Λ

Λ

)
∆αS

=
∆αS(µ)

8πb0α2
S(µ)

× [1 +O(αS(µ))] , (293)(
∆Λ

Λ

)
trunc

= kαnl
S (µ) +O(αnl+1

S (µ)) , (294)
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where the pre-factor k depends on bnl+1 and in typical good schemes such as MS it is numer-
ically of order one. Statistical and systematic errors such as discretization effects contribute
to ∆αS(µ). In the above we dropped a scheme subscript for the Λ-parameters because of
Eq. (292).

By convention αMS is usually quoted at a scale µ = MZ where the appropriate effective

coupling is the one in the five-flavour theory: α
(5)

MS
(MZ). In order to obtain it from a result with

fewer flavours, one connects effective theories with different number of flavours as discussed
by Bernreuther and Wetzel [21]. For example, one considers the MS scheme, matches the
3-flavour theory to the four-flavour theory at a scale given by the charm-quark mass [22–24],
runs with the 5-loop β-function [16–20] of the four-flavour theory to a scale given by the b-
quark mass, and there matches to the five-flavour theory, after which one runs up to µ =MZ

with the five-loop β-function. For the matching relation at a given quark threshold we use

the mass m⋆ which satisfies m⋆ = m
(Nf )

MS
(m⋆), where m is the running mass (analogous to the

running coupling). Then

ḡ2Nf−1(m⋆) = ḡ2Nf
(m⋆)× [1 + 0× ḡ2Nf

(m⋆) +
∑
n≥2

tn ḡ
2n
Nf

(m⋆)] (295)

with [22, 24, 25]

t2 =
1

(4π2)2
11

72
, (296)

t3 =
1

(4π2)3

[
−82043

27648
ζ3 +

564731

124416
− 2633

31104
(Nf − 1)

]
, (297)

t4 =
1

(4π2)4
[
5.170347− 1.009932(Nf − 1)− 0.021978 (Nf − 1)2

]
, (298)

(where ζ3 is the Riemann zeta-function) provides the matching at the thresholds in the MS
scheme. Often the software packages RunDec [26, 27] or the more recent one, REvolver [28],
are used for quark-threshold matching and running in the MS-scheme.

While t2, t3, t4 are numerically small coefficients, the charm-threshold scale is also rela-
tively low and so there are nonperturbative uncertainties in the matching procedure, which are
difficult to estimate but which we assume here to be negligible. This is supported by nonper-
turbative tests [29], where perturbative decoupling relations in the MS scheme were shown to
quantitatively describe decoupling at the few permille level, down to the charm-quark region.
Obviously there is no perturbative matching formula across the strange “threshold”; here
matching is entirely nonperturbative. Model-dependent extrapolations of ḡ2Nf

from Nf = 0, 2
to Nf = 3 were done in the early days of lattice gauge theory. We will include these in our
listings of results but not in our estimates, since such extrapolations are based on untestable
assumptions.

9.1.2 Overview of the review of αs

We begin by explaining lattice-specific difficulties in Sec. 9.2.1 and the FLAG criteria designed
to assess whether the associated systematic uncertainties can be controlled and estimated in a
reasonable manner. These criteria remain unchanged since the FLAG 19 report, as there has
still not been sufficiently broad progress to make them more stringent. However, in this report
we have implemented a systematic scale variation to help assess systematic errors due to the
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truncation of the perturbative series. Scale variations are widely used in phenomenology and
its application to lattice determinations has been advocated in Ref. [11]. We explain the
procedure at the end of this introduction and, where possible, we will quote corresponding
results.

We then discuss, in Sec. 9.3 – Sec. 9.9, the various lattice approaches and results from
calculations with Nf = 0, 2, 2+1, and 2+1+1 flavours. For lattice approaches with neither
a new result nor a result passing all FLAG criteria, we refer to the discussion in previous
FLAG reports. In particular, this regards determinations of αs from QCD vertices and from
the eigenvalue spectrum of the Dirac operator.

Since FLAG 21, the strategy of nonperturbative renormalization by decoupling, as intro-
duced by the ALPHA collaboration in Ref. [30], produced a new result for αs. It is important
to realize that this method shifts the perspective on results for the Λ-parameter with unphys-
ical flavour numbers, in particular for Nf = 0: Such results can be related to Nf > 0 results
by a nonperturbative matching calculation. We therefore made an effort to review Nf = 0
results, some of which are now over 20 years old. In particular, we also included a new section
on the gradient-flow (GF) coupling in infinite space-time volume, even though only results
for Nf = 0 exist at the moment.

After the discussion of the various lattice methods, we proceed, in Sec. 9.10, with the

averages together with our best estimates for α
(5)

MS
. These are currently determined from three-

and four-flavour QCD simulations only, however, with the decoupling result also relying on
the Nf = 0 Λ-parameter as input. Therefore, we discuss results for the Nf = 0 Λ-parameter in
some detail, in addition to the physical cases with Nf = 3, 4 and 5, where the latter is derived
from Nf = 3 and 4 results by the standard perturbative evolution across the bottom-quark
threshold.

9.1.3 Additions with respect to the FLAG 21 report

Since the FLAG 21 report there were two new papers on Nf = 3:

Petreczky 20 [31] from heavy-quark current two-point functions (Sec. 9.8).

ALPHA 22 [32] from the decoupling method (Sec. 9.4).

In Nf = 0 QCD, there are a number of additional works:

Bribian 21 [33], from step-scaling with the twisted periodic gradient-flow coupling
(Sec. 9.3).

Hasenfratz 23 [34] and Wong 23 [35] from the GF scheme in infinite volume (Sec. 9.9)

Chimirri 23 [36] from heavy-quark current two-point functions (Sec. 9.8)

Brambilla 23 [37], from the force between static quarks (Sec. 9.5)

9.2 General issues

9.2.1 Discussion of criteria for computations entering the averages

As in the PDG review, we only use calculations of αs published in peer-reviewed journals,
and that use NNLO or higher-order perturbative expansions, to obtain our final range in
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Sec. 9.10. We also, however, introduce further criteria designed to assess the ability to con-
trol important systematics, which we describe here. Some of these criteria, e.g., that for the
continuum extrapolation, are associated with lattice-specific systematics and have no con-
tinuum analogue. Other criteria, e.g., that for the renormalization scale, could in principle
be applied to nonlattice determinations. Expecting that lattice calculations will continue to
improve significantly in the near future, our goal in reviewing the state-of-the-art here is to
be conservative and avoid prematurely choosing an overly small range.

In lattice calculations, we generally take Q to be some combination of physical amplitudes
or Euclidean correlation functions which are free from UV and IR divergences and have a well-
defined continuum limit. Examples include the force between static quarks and two-point
functions of quark-bilinear currents.

In comparison to values of observables Q determined experimentally, those from lattice
calculations require two more steps. The first step concerns obtaining the scale µ in physical
units (GeV), given its value, aµ, in lattice units. Ideally one compares the lattice result for
some hadron mass aMhad with the known experimental result for Mhad to determine a and
thus µ in physical units. Alternatively, convenient intermediate scales such as

√
t0, w0, r0, r1,

[38–41] can be used if their relation to an experimental dimensionful observable is established.
For more details we refer to Sec. 11 on scale setting in this FLAG report. The low-energy scale
µ needs to be computed at the same lattice spacings (i.e., the same bare couplings) where Q
is determined, at least as long as one does not use the step-scaling method (see below). This
induces a practical difficulty given present computing resources. In the determination of the
low-energy reference scale the volume needs to be large enough to avoid finite-size effects. On
the other hand, in order for the perturbative expansion of Eq. (286) to be reliable, one has
to reach sufficiently high values of µ, i.e., short enough distances. To avoid uncontrollable
discretization effects the lattice spacing a has to be accordingly small. This means

L≫ hadron size ∼ Λ−1
QCD and 1/a≫ µ , (299)

(where L is the box size) and therefore

L/a≫ µ/ΛQCD . (300)

The currently available computer power, however, limits L/a, typically to L/a = 32 − 96.
Unless one accepts compromises in controlling discretization errors or finite-size effects, this
means one needs to set the scale µ according to

µ≪ L/a× ΛQCD ∼ 10− 30GeV . (301)

(Here ≪ or ≫ means at least one order of magnitude smaller or larger.) Therefore, µ can
be 1−3GeV at most. This raises the concern whether the asymptotic perturbative expansion
truncated at 1-loop, 2-loop, or 3-loop in Eq. (286) is sufficiently accurate. There is a finite-size
scaling method, usually called step-scaling method, which solves this problem by identifying
µ = 1/L in the definition of Q(µ), see Sec. 9.3.

For the second step after setting the scale µ in physical units (GeV), one should compute
Q on the lattice, Qlat(a, µ) for several lattice spacings and take the continuum limit to obtain
the left hand side of Eq. (286) as

Q(µ) ≡ lim
a→0

Qlat(a, µ) with µ fixed . (302)
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This is necessary to remove the discretization error.
Here it is assumed that the quantity Q has a continuum limit, which is regularization-

independent. The method discussed in Sec. 9.7, which is based on the perturbative expansion
of a lattice-regulated, divergent short-distance quantity Wlat(a) differs in this respect and
must be treated separately.

In summary, a controlled determination of αs needs to satisfy the following:

1. The determination of αs is based on a comparison of a short-distance quantity Q at scale
µ with a well-defined continuum limit without UV and IR divergences to a perturbative
expansion formula in Eq. (286).

2. The scale µ is large enough so that the perturbative expansion in Eq. (286) is precise
to the order at which it is truncated, i.e., it has good asymptotic convergence.

3. If Q is defined by physical quantities in infinite volume, one needs to satisfy Eq. (300).

4. Nonuniversal quantities, i.e., quantities that depend on the chosen lattice regularization
and do not have a nontrivial continuum limit need a separate discussion, see Sec. 9.7.

Conditions 2. and 3. give approximate lower and upper bounds for µ respectively. It is
important to see whether there is a window to satisfy 2. and 3. at the same time. If it exists,
it remains to examine whether a particular lattice calculation is done inside the window or
not.

Obviously, an important issue for the reliability of a calculation is whether the scale µ
that can be reached lies in a regime where perturbation theory can be applied with confi-
dence. However, the value of µ does not provide an unambiguous criterion. For instance,
the Schrödinger Functional, or SF coupling (Sec. 9.3) is conventionally taken at the scale
µ = 1/L, but one could also choose µ = 2/L. Instead of µ we therefore define an effective
αeff . For schemes such as SF (see Sec. 9.3) or qq (see Sec. 9.5) this is directly the coupling
of the scheme. For other schemes such as the vacuum polarization we use the perturbative
expansion Eq. (286) for the observable Q to define

αeff = Q/c1 . (303)

As mentioned earlier, if there is an αs-independent term it should first be subtracted. Note
that this is nothing but defining an effective, regularization-independent coupling, a physical
renormalization scheme. For ease of notation, here and in what follows we denote by αs the
coupling αMS(µ) that appears in Eq. (286).

Let us now comment further on the use of the perturbative series. Since it is only an
asymptotic expansion, the remainder Rn(Q) = Q −

∑
i≤n ciα

i
s of a truncated perturbative

expression Q ∼
∑

i≤n ciα
i
s cannot just be estimated as a perturbative error k αn+1

s . The error
is nonperturbative. Often one speaks of “nonperturbative contributions”, but nonperturbative
and perturbative cannot be strictly separated due to the asymptotic nature of the series (see,
e.g., Ref. [42]).

Still, we do have some general ideas concerning the size of nonperturbative effects. The
known ones such as instantons or renormalons decay for large µ like inverse powers of µ and
are thus roughly of the form

exp(−γ/αs) , (304)
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with some positive constant γ. Thus we have, loosely speaking,

Q = c1αs + c2α
2
s + . . .+ cnα

n
s +O(αn+1

s ) +O(exp(−γ/αs)) . (305)

For small αs, the exp(−γ/αs) is negligible. Similarly the perturbative estimate for the mag-
nitude of relative errors in Eq. (305) is small; as an illustration for n = 3 and αs = 0.2 the
relative error is ∼ 0.8% (assuming coefficients |cn+1/c1| ∼ 1).

For larger values of αs nonperturbative effects can become significant in Eq. (305). An
instructive example comes from the values obtained from τ decays, for which αs ≈ 0.3. Here,
different applications of perturbation theory (fixed order and contour improved) each look
reasonably asymptotically convergent but the difference does not seem to decrease much with
the order (see, e.g., the contribution by Pich to Ref. [43]; see, however, also the discussion in
Refs. [44, 45]). In addition, nonperturbative terms in the spectral function may be nonnegli-
gible even after the integration up to mτ (see, e.g., Refs. [46], [47]). All of this is because αs

is not really small.
Since the size of the nonperturbative effects is very hard to estimate one should try to

avoid such regions of the coupling. In a fully controlled computation one would like to verify
the perturbative behaviour by changing αs over a significant range instead of estimating the
errors as ∼ αn+1

s . Some computations try to take nonperturbative power ‘corrections’ to the
perturbative series into account by including such terms in a fit to the µ-dependence. We
note that this is a delicate procedure, as a term like, e.g., αs(µ)

3 is hard to distinguish from
a 1/µ2 term when the µ-range is restricted and statistical and systematic errors are present.
We consider it safer to restrict the fit range to the region where the power corrections are
negligible compared to the estimated perturbative error.

The above considerations lead us to the following special criteria for the determination of
αs:

• Renormalization scale

⋆ all data points relevant in the analysis have αeff < 0.2

◦ all data points have αeff < 0.4 and at least one αeff ≤ 0.25

■ otherwise

• Perturbative behaviour

⋆ verified over a range of a factor 4 change in αnl
eff without power corrections or

alternatively αnl
eff ≤ 1

2∆αeff/(8πb0α
2
eff) is reached

◦ agreement with perturbation theory over a range of a factor (3/2)2 in αnl
eff possibly

fitting with power corrections or alternatively αnl
eff ≤ ∆αeff/(8πb0α

2
eff) is reached

■ otherwise

Here ∆αeff is the accuracy cited for the determination of αeff and nl is the loop order to
which the connection of αeff to the MS scheme is known. Recall the discussion around
Eqs. (293,294); the β-function of αeff is then known to (nl + 1)-loop order.1

1Once one is in the perturbative region with αeff , the error in extracting the Λ-parameter due to the
truncation of perturbation theory scales like α

nl
eff , as discussed around Eq. (294). In order to detect/control

such corrections properly, one needs to change the correction term significantly; we require a factor of four for
a ⋆ and a factor (3/2)2 for a ◦ . An exception to the above is the situation where the correction terms are
small anyway, i.e., α

nl
eff ≈ (∆Λ/Λ)trunc < (∆Λ/Λ)∆α ≈ ∆αeff/(8πb0α

2
eff) is reached.
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• Continuum extrapolation

At a reference point of αeff = 0.3 (or less) we require

⋆ three lattice spacings with µa < 1/2 and full O(a) improvement,
or three lattice spacings with µa ≤ 1/4 and 2-loop O(a) improvement,
or µa ≤ 1/8 and 1-loop O(a) improvement

◦ three lattice spacings with µa < 3/2 reaching down to µa = 1 and full O(a)
improvement,
or three lattice spacings with µa ≤ 1/4 and 1-loop O(a) improvement

■ otherwise

In addition to the above criteria we have looked at scale variations as a general means to
assess perturbative behaviour (cf. subsection below). Continuum extrapolations are often not
the primary concern in determinations of αs. Where appropriate we will evaluate the new
FLAG data-driven criterion, by which the distance of the data to the continuum-extrapolated
value is measured in units of the quoted error. If the observable is Q(a) with an extrapolated
continum value Q(0)±∆Q we look at the size of

δmin =
|Q(0)−Q(amin)|

∆Q
. (306)

Some scepticism is warranted if δmin exceeds 3 or so, although there may be cases where this
can be justified. While we keep the core FLAG criteria unchanged, our general assessment
will be informed by these measures.

We also need to specify what is meant by µ. Here are our choices:

step scaling : µ = 1/L ,

heavy quark-antiquark potential : µ = 2/r ,

observables in position space : µ = 1/|x| ,
observables in momentum space : µ = q ,

moments of heavy-quark currents : µ = 2mc ,

Gradient-Flow (GF) scheme in infinite volume : µ = 1/
√
8t , (307)

where |x| is the Euclidean norm of the four-vector x, q is the magnitude of the momentum, mc

is the heavy-quark mass (in the MS scheme withNf quarks, including the heavy-quark flavour)
and usually taken around the charm-quark mass. The parameter t denotes the gradient-flow
time. We note again that the above criteria cannot be applied when regularization-dependent
quantities Wlat(a) are used instead of Q(µ). These cases are specifically discussed in Sec. 9.7.

In principle one should also account for electro-weak radiative corrections. However, both
in the determination of αs at intermediate scales µ and in the running to high scales, we
expect electro-weak effects to be much smaller than the presently reached precision. Such
effects are therefore not further discussed.

The attentive reader will have noticed that bounds such as µa < 3/2 or at least one
value of αeff ≤ 0.25 which we require for a ◦ are not very stringent. There is a considerable
difference between ◦ and ⋆. We have chosen the above bounds, unchanged since FLAG 16,
as not too many current computations would satisfy more stringent ones. Nevertheless, we
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believe that the ◦ criteria already give reasonable bases for estimates of systematic errors.
An exception may be Cali 20 [48], which is discussed in detail in Sec. 9.6.

In anticipation of future changes of the criteria, we expect that we will be able to tighten
our criteria for inclusion in the average, and that many more computations will reach the
present ⋆ rating in one or more categories.

In addition to our explicit criteria, the following effects may influence the precision of
results:

Topology sampling: In principle a good way to improve the quality of determinations of αs

is to push to very small lattice spacings thus enabling large µ. It is known that the sampling of
field space becomes very difficult for the HMC algorithm when the lattice spacing is small and
one has the standard periodic boundary conditions. In practice, for all known discretizations
the topological charge slows down dramatically for a ≈ 0.05 fm and smaller [49–55]. Open
boundary conditions solve the problem [56] but are not frequently used. Since the effect of
the freezing on short-distance observables is not known, we also do need to pay attention to
this issue. Remarks are added in the text when appropriate.

Quark-mass effects: We assume that effects of the finite masses of the light quarks (in-
cluding strange) are negligible in the effective coupling itself where large, perturbative, µ is
considered.

Scale setting: The scale does not need to be very precise, since using the lowest-order
β-function shows that a 3% error in the scale determination corresponds to a ∼ 0.5% error in
αs(MZ). Since the errors of scale determinations are now typically at the 1-2 percent level or
better, the corresponding error in αs(MZ) will remain subdominant for the foreseeable futre.

Other limits/extrapolations: Besides the continuum limit and the infinite-volume extrap-
olation of hadronic observables, further limits may be required, depending on the method
employed. An obvious case is the large-mass extrapolation in the decoupling method. While
in this case, an effective theory can be deployed to derive plausible fit functions, this is less
clear in other cases. An example is the infinite space-time volume extrapolation in the GF
scheme, which is needed to make contact with the available perturbative calculations. One
would expect the volume dependence to be quite different at low and high energies, and there
may be a complicated intermediate regime. Systematic uncertainties are then much harder
to quantify and our approach necessarily is on a case-by-case basis. Data-driven criteria like
the new FLAG continuum-limit criterion are considered, however, these may fail if the data
does not sufficiently overlap with the true (and possibly unknown) asymptotic regime.

9.2.2 Physical scale

Since FLAG 19, a new FLAG working group on scale setting has been established. We refer
to Sec. 11 for definitions and the current status. Note that the error from scale setting is
sub-dominant for current αs determinations.

A popular scale choice has been the intermediate r0 scale, and its variant r1, which
both derive from the force between static quarks, see Eq. (338). One should bear in mind
that their determination from physical observables also has to be taken into account. The
phenomenological value of r0 was originally determined as r0 ≈ 0.49 fm through potential
models describing quarkonia [40]. Of course the quantity is precisely defined, independently
of such model considerations. But a lattice computation with the correct sea-quark content is
needed to determine a completely sharp value. When the quark content is not quite realistic,
the value of r0 may depend to some extent on which experimental input is used to determine
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(actually define) it.
The latest determinations from two-flavour QCD are r0 = 0.420(14)–0.450(14) fm by the

ETM collaboration [57, 58], using as input fπ and fK and carrying out various continuum ex-
trapolations. On the other hand, the ALPHA collaboration [59] determined r0 = 0.503(10) fm
with input from fK , and the QCDSF collaboration [60] cites 0.501(10)(11) fm from the mass
of the nucleon (no continuum limit). Recent determinations from three-flavour QCD are con-
sistent with r1 = 0.313(3) fm and r0 = 0.472(5) fm [61–63]. Due to the uncertainty in these
estimates, and as many results are based directly on r0 to set the scale, we shall often give
both the dimensionless number r0ΛMS, as well as ΛMS. In the cases where no physical r0 scale
is given in the original papers or we convert to the r0 scale, we use the value r0 = 0.472 fm. In
case r1ΛMS is given in the publications, we use r0/r1 = 1.508 [63], to convert, which remains
well consistent with the update [54] neglecting the error on this ratio. In some, mostly early,
computations the string tension,

√
σ was used. We convert to r0 using r20σ = 1.65 − π/12,

which has been shown to be an excellent approximation in the relevant pure gauge theory
[64, 65].

The more recent gradient-flow scales t0, w0 are very attractive alternatives to r0, as their
determination is much simpler within a given simulation and most collaborations quote their
values. The main downside are potentially large cutoff effects. We intend to transition from
r0 to t0. In this report we start by reporting Nf = 0 results both with r0 and with

√
8t0, where

we use as conversion factor the central value of
√
8t0/r0 = 0.9435(97) from Dalla Brida 19 [30].

A general discussion of the various scales is given in the scale-setting section of this FLAG
report, cf. Sec. 11.

9.2.3 Studies of truncation errors of perturbation theory

As discussed previously, we have to determine αs in a region where the perturbative expansion
for the β-function, Eq. (289) in the integral Eq. (288), is reliable. In principle this must be
checked, and is difficult to achieve as we need to reach up to a sufficiently high scale. A
recipe routinely used to estimate the size of truncation errors of the perturbative series is to
study the dependence on the renormalization scale of an observable evaluated at a fixed order
in the coupling, as the renormalization scale is varied around some ‘optimal’ scale µ∗, from
µ = µ∗/2 to 2µ∗. For examples, see Ref. [11].

Alternatively, or in addition, the renormalization scheme chosen can be varied, which
investigates the perturbative conversion of the chosen scheme to the perturbatively defined
MS scheme and in particular ‘fastest apparent convergence’ when the ‘optimal’ scale is chosen
so that the O(α2

s) coefficient vanishes.
The ALPHA collaboration in Ref. [66] and ALPHA 17 [67], within the SF approach defined

a set of ν-schemes for which the 3-loop (scheme-dependent) coefficient of the β-function for
Nf = 2+ 1 flavours was computed to be bν2 = −(0.064(27) + 1.259(1)ν)/(4π)3. The standard

SF scheme has ν = 0. For comparison, bMS
2 = 0.324/(4π)3. A range of scales from about

4GeV to 128GeV was investigated. It was found that while the procedure of varying the
scale by a factor 2 up and down gave a correct estimate of the residual perturbative error for
ν ≈ 0 . . . 0.3, for negative values, e.g., ν = −0.5, the estimated perturbative error is much too
small to account for the mismatch in the Λ-parameter of ≈ 8% at αs = 0.15. This mismatch,
however, did, as expected, still scale with αnl

s with nl = 2. In the schemes with negative ν,
the coupling αs has to be quite small for scale variations of a factor 2 to correctly signal the
perturbative errors.
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For a systematic study of renormalization-scale variations as a measure of perturbative
truncation errors in various lattice determinations of αs, we implement scale variations fol-
lowing the proposal in Ref. [11]. Scale variations are commonly used in phenomenology as a
tool to investigate truncations errors. While they cannot give a precise estimate of the trun-
cation errors, they provide a simple, quantitative test that can be uniformly applied to all
observables. Furthermore, the implementation proposed in Ref. [11] does not rely on lattice
data. The only inputs are the coefficients of the perturbative expansion of αeff , so that, in
principle, an estimate of the truncation errors can be done before embarking in a numeri-
cal simulation. Here we shall summarize briefly the methodology, provide the coefficients of
the perturbative expansions for the observables of interest in this review, and compute the
corresponding truncation errors.

Methodology The use of scale variations for the determination of the missing higher-order
uncertainties relies on a simple observation, namely that the scale µ that appears on the
left-hand side of Eq. (286) does not need to match the scale at which the running coupling
constant is computed on the right-hand side of the same equation. Eq. (286) can be rewritten,
with the same level of precision, as

Q(µ) = c1αMS(µ
′) +

n∑
k=2

c′k(s)αMS(µ
′)k +O

(
αMS(µ

′)n+1
)
, (s = µ′/µ) . (308)

The coefficients

c′k(s) =
k−1∑
ℓ=0

c′k,ℓ log
ℓ(s) , (309)

for k ≥ 2, are determined from the coefficients ck in Eq. (286) using the recursion

c′k,0 = ck , (310)

c′k,ℓ =
2

ℓ

k−1∑
j=1

j(4π)k−jbk−j−1c
′
j,ℓ−1 , (311)

where bn are the coefficients of the beta function defined in Eq. (289). The dependence on s,
and therefore on the scale µ′, is entirely due to the truncation of the perturbative expansion.
Denoting the truncated series by

Q(n)(µ, µ′) = c1αMS(µ
′) +

n∑
k=2

c′k(s)αMS(µ
′)k , (312)

it is possible to show that the scale-variation procedure described below yields a sensible
estimate of the truncation error

δn =
∣∣∣Q(µ)−Q(n)(µ, µ′)

∣∣∣ , (313)

see, e.g., the discussion in Ref. [68]. Formally,

µ′
∂

∂µ′
Q(n)(µ, µ′) ∝ αMS(µ

′)n+1 , (314)

showing that scale variations capture the correct size of the truncation error, at least para-
metrically.
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Implementation The implementation of the scale variations proceeds as follows.

1. We assume a value for Λ
(3)

MS
, e.g., the current best estimate in FLAG. Given this value,

we compute the corresponding value of αMS(srefµ) (at fixed Nf = 3) where µ is the
scale associated to the observable Q. Typical choices are sref = 1 or sref = s∗, the latter
being the scale of fastest apparent convergence. Similarly, we also compute the value

of α
(5)

MS
(MZ). All these values are computed using the running of the strong coupling,

the value of Λ
(3)

MS
as the unique input, in addition to the MS charm- and bottom-quark

masses at their own scale, m̄
(4)
c (m̄c) and m̄

(5)
b (m̄b), respectively and mZ .

2. Using Eq. (312), we compute the value Qref of the observable by imposing that it
coincides with its truncated expansion,

Qref = Q(n)(µ, srefµ) , (315)

where srefµ is the scale associated to the observable as shown explicitly in Eq. (286).
By construction, using the value Qref , setting s = sref , and solving Eq. (312), we recover
for αMS(srefµ) the value obtained in step 1. Hence, we interpret Qref as the value of

the observable that yields the value of α
(5)

MS
(MZ) in step 1, when performing the usual

extraction of the strong coupling.

3. We use Eq. (312) again, but this time set s = sref/2, 2sref , to extract αMS(sµ) by solving

Qref = Q(n)(µ, sµ) . (316)

Because the expansion is truncated, the value obtained here for αMS(sµ) is different
from the one obtained by running the coupling from the value of αMS(srefµ) computed
in step 2.

4. Using αMS(sµ) as the initial condition, we run the strong coupling constant and compute

α
(5)

MS
(MZ). The difference between this value and the value computed in step 1 is used

as an estimate of the uncertainty due to the truncation of the perturbative expansion.

Typically scale variations are performed by multiplying and dividing the reference scale
by a factor 2. For some determinations, where the perturbative matching is done at a few
GeV, dividing the scale by a factor of 2 yields a low scale where perturbation theory is clearly
no longer applicable and therefore the scale variation yields an artificially large error. In these
cases, we consider only the variation obtained by multiplying the reference scale by a factor
2. To be more specific, we define the following quantities.

δ(4)(sref): The renormalization scale srefQ is multiplied and divided by a factor two. We
quote a symmetric error by averaging the difference between the results obtained with
the scales srefQ and 2srefQ, and the difference between the results obtained with scales
sref/2×Q and srefQ. Note however that in some cases the error is markedly asymmetric.
We will quote the differences as a percentage deviation from the reference value of
αs(mZ).

δ(2)(sref): The renormalization scale is multipied by a factor two only. The error δ(2)(sref) is
simply the difference between the two results obtained with the two scales, again taken
as a percentage deviation from the reference value of αs(mZ).
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We also explore two common choices, namely sref = 1 and sref = s∗, the scale of fastest
apparent convergence, i.e., the scale at which c′2(s

∗) = 0.

Perturbative coefficients The coefficients of the perturbative expansion for the observ-
ables of interest in this review are summarized in Tab. 56. For each observable we report the
number of coefficients that are available for the perturbative expansion, the scale at which
the perturbative matching is done, the list of coefficients and the relevant references.

Observable nl (loops) Q [GeV] perturbative coefficients References

Step-scaling 2 80 −1.37520970, 0.57120172 [69, 70]

3 1.5 −0.0485502, 0.687447, 0.818808 [71–75]
Potential 2.5 same as line above, Q changed

5.0 same as line above, Q changed

3 2.0 −1.4346, 0.16979, 3.21120 [76]
Vacuum polarization 4.0 [77]

1.3 [48]

− logW11 2 4.4 −0.87811924, 4.20161085 [78, 79]
− logW12/u

6
0 4.4 0.79128076, 3.18658638

HQ r4 2 mc −0.07762325, 0.07957445 [80–82]
HQ r4 2mc same as line above, Q changed
HQ r6 2mc 0.77386542, −0.08560363
HQ r8 2mc 1.08917060, 0.20034888

GF coupling 2 1/
√
8t

1.09778674 + 0.007555192 Nf

−0.98225− 0.069913Nf + 0.001872234N2
f

[38, 83]

Table 56: Summary of the coefficients of the perturbative expansion of the observables dis-
cussed in this review as a power series in αMS. We assume that the observables are normalized
so that c1 = 1 and we only quote the coefficients starting from c2. The coefficients are com-
puted for Nf = 3, unless the explicit dependence on the number of flavours is given. For each
observable, we quote the number of coefficients that are known analytically and the scale
of perturbative matching to the MS scheme. Note that for the GF coupling there are two
coefficients, reported as functions of Nf , over two separate lines.

9.3 αs from Step-Scaling Methods

9.3.1 General considerations

The method of step-scaling functions avoids the scale problem, Eq. (299). It is in principle
independent of the particular boundary conditions used and was first developed with periodic
boundary conditions in a two-dimensional model [84].

The essential idea of the step-scaling strategy is to split the determination of the running
coupling at large µ and of a hadronic scale into two lattice calculations and connect them
by ‘step scaling’. In the former part, we determine the running coupling constant in a finite-
volume scheme in which the renormalization scale is set by the inverse lattice size µ = 1/L.
In this calculation, one takes a high renormalization scale while keeping the lattice spacing
sufficiently small as

µ ≡ 1/L ∼ 10 . . . 100GeV , a/L≪ 1 . (317)

In the latter part, one chooses a certain ḡ2max = ḡ2(1/Lmax), typically such that Lmax is
around 0.5–1 fm. With a common discretization, one then determines Lmax/a and (in a large

14

http://arxiv.org/abs/2411.04268


Y. Aoki et al. FLAG Review 2024 2411.04268

volume L ≥ 2–3 fm) a hadronic scale such as a hadron mass,
√
t0/a or r0/a at the same

bare parameters. In this way one gets numbers for, e.g., Lmax/r0 and by changing the lattice
spacing a carries out a continuum-limit extrapolation of that ratio.

In order to connect ḡ2(1/Lmax) to ḡ2(µ) at high µ, one determines the change of the
coupling in the continuum limit when the scale changes from L to L/s, where s is a scale factor,
set to s = 2 in most applications. Then, starting from L = Lmax one iteratively performs k
steps to arrive at µ = sk/Lmax. This part of the strategy is called step scaling. Combining
these results yields ḡ2(µ) at µ = sk (r0/Lmax) r

−1
0 , where r0 stands for the particular chosen

hadronic scale.
At present most applications in QCD use Schrödinger functional boundary conditions [85,

86] and we discuss this below in a little more detail. (However, other boundary conditions
are also possible, such as twisted periodic boundary conditions for the gauge fields and the
discussion also applies to them.) An important reason is that these boundary conditions
avoid zero modes for the quark fields and quartic modes [87] in the perturbative expansion
in the gauge fields. Furthermore the corresponding renormalization scheme is well studied in
perturbation theory [70, 88, 89] with the 3-loop β-function and 2-loop cutoff effects (for the
standard Wilson regularization) known.

In order to have a perturbatively well-defined scheme, the SF scheme uses Dirichlet bound-
ary conditions at time t = 0 and t = T . These break translation invariance and permit
O(a) counter terms at the boundary through quantum corrections. Therefore, the lead-
ing discretization error is O(a). Improving the lattice action is achieved by adding counter
terms at the boundaries whose coefficients are denoted as ct, c̃t. In practice, these coefficients
are computed with 1-loop or 2-loop perturbative accuracy. A better precision in this step
yields a better control over discretization errors, which is important, as can be seen, e.g., in
Refs. [64, 90].

Also computations with Dirichlet boundary conditions do in principle suffer from the
insufficient change of topology in the HMC algorithm at small lattice spacing. However, in
a small volume the weight of nonzero charge sectors in the path integral is exponentially
suppressed [91] and in a Monte Carlo run of typical length very few configurations with
nontrivial topology should appear.2 Considering the issue quantitatively Ref. [92] finds a
strong suppression below L ≈ 0.8 fm. Therefore the lack of topology change of the HMC is
not a serious issue for the high-energy regime in step-scaling studies. However, the matching
to hadronic observables requires volumes where the problem cannot be ignored. Therefore,
Ref. [93] includes a projection to zero topology into the definition of the coupling. A very
interesting comparison of the step-scaling approach for a (Q = 0)-projected coupling and its
unprojected version was recently carried out in Ref. [94], with Nf = 0 and twisted periodic
boundary conditions for the gauge field. A new parallel-tempering approach to relate systems
with different boundary conditions was used. The results validate the Q = 0 approach, in
that step scaling in large volume (where contributions from Q ̸= 0 configurations are sizeable)
leads, within errors, to indistinguishable results, once the couplings are properly matched. We
note also that a mix of Dirichlet and open boundary conditions is expected to remove the
topology issue entirely [95] and may be considered in the future.

Apart from the boundary conditions, the very definition of the coupling needs to be
chosen. We briefly discuss in turn, the two schemes used at present, namely, the ‘Schrödinger

2We simplify here and assume that the classical solution associated with the used boundary conditions has
charge zero. In practice this is the case.
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Functional’ (SF) and ‘Gradient Flow’ (GF) schemes.
The SF scheme is the first one, which was used in step-scaling studies in gauge theories

[85]. Inhomogeneous Dirichlet boundary conditions are imposed in time,

Ak(x)|x0=0 = Ck , Ak(x)|x0=L = C ′
k , (318)

for k = 1, 2, 3. Periodic boundary conditions (up to a phase for the fermion fields) with period
L are imposed in space. The matrices

LCk = idiag
(
η − π/3,−η/2,−η/2 + π/3

)
,

LC ′
k = idiag

(
− (η + π), η/2 + π/3, η/2 + 2π/3

)
,

just depend on the dimensionless parameter η. The coupling ḡSF is obtained from the η-
derivative of the effective action,

⟨∂ηS|η=0⟩ =
12π

ḡ2SF
. (319)

For this scheme, the finite c
(i)
g , Eq. (291), are known for i = 1, 2 [70, 89].

More recently, gradient-flow couplings have been used frequently because of their small
statistical errors at large couplings (in contrast to ḡSF, which has small statistical errors at
small couplings). The gradient flow is introduced as follows [38, 96]. Consider the flow gauge
field Bµ(t, x) with the flow time t, which is a one-parameter deformation of the bare gauge
field Aµ(x), where Bµ(t, x) is the solution to the gradient-flow equation

∂tBµ(t, x) = DνGνµ(t, x) ,

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ] , (320)

with initial condition Bµ(0, x) = Aµ(x). The renormalized coupling is defined by [38]

ḡ2GF(µ) = N t2⟨E(t, x)⟩
∣∣
µ=1/

√
8t
, (321)

with N = 16π2/3 +O((a/L)2) and where E(t, x) is the action density given by

E(t, x) =
1

4
Ga

µν(t, x)G
a
µν(t, x). (322)

In a finite volume, one needs to specify additional conditions. In order not to introduce two
independent scales one sets

√
8t = cL , (323)

for some fixed number c [97]. Schrödinger functional boundary conditions [98] or twisted
periodic boundary conditions [33, 99, 100] have been employed. Matching of the GF coupling
to the MS-scheme coupling is known to 1-loop for twisted boundary conditions with zero
quark flavours and SU(3) group [100] and to 2-loop with SF boundary conditions with zero
quark flavours [101]. The former is based on a MC evaluation at small couplings and the
latter on numerical stochastic perturbation theory.3
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Collaboration Ref. Nf pu
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scale ΛMS[MeV] r0ΛMS

ALPHA 10A [103] 4 A ⋆ ⋆ ⋆ only running of αs in Fig. 4
Perez 10 [104] 4 C ⋆ ⋆ ◦ only step-scaling function in Fig. 4

ALPHA 17 [105] 2+1 A ⋆ ⋆ ⋆
√
8t0 = 0.415 fm 341(12) 0.816(29)

PACS-CS 09A[106] 2+1 A ⋆ ⋆ ◦ mρ 371(13)(8)(+0
−27)

# 0.888(30)(18)(+0
−65)

†

A ⋆ ⋆ ◦ mρ 345(59)## 0.824(141)†

ALPHA 12∗ [59] 2 A ⋆ ⋆ ⋆ fK 310(20) 0.789(52)

ALPHA 04 [107] 2 A ■ ⋆ ⋆ r0 = 0.5 fm§ 245(16)(16)§ 0.62(2)(2)§

ALPHA 01A [108] 2 A ⋆ ⋆ ⋆ only running of αs in Fig. 5

Bribian 21 [33] 0 A ⋆ ⋆ ⋆ r0 = 0.5fm 249.4(8.0) 0.632(20)
Nada 20 [109] 0 A ⋆ ⋆ ⋆ consistency checks for [110], same gauge configurations
Dalla Brida 19[110] 0 A ⋆ ⋆ ⋆ r0 = 0.5fm 260.5(4.4) 0.660(11)

Ishikawa 17 [100] 0 A ⋆ ⋆ ⋆ r0, [
√
σ] 253(4)(+13

−2 )† 0.606(9)(+31
−5 )+

CP-PACS 04& [90] 0 A ⋆ ⋆ ◦ only tables of g2SF
ALPHA 98†† [111] 0 A ⋆ ⋆ ◦ r0 = 0.5fm 238(19) 0.602(48)

Lüscher 93 [88] 0 A ⋆ ◦ ◦ r0 = 0.5fm 233(23) 0.590(60)§§

# Result with a constant (in a) continuum extrapolation of the combination Lmaxmρ.
† In conversion from ΛMS to r0ΛMS and vice versa, r0 is taken to be 0.472 fm.

## Result with a linear continuum extrapolation in a of the combination Lmaxmρ.
∗ Supersedes ALPHA 04.
§ The Nf = 2 results were based on values for r0/a which have later been found to be too small by [59].

The effect will be of the order of 10–15%, presumably an increase in Λr0. We have taken this into
account by a ■ in the renormalization scale.

& This investigation was a precursor for PACS-CS 09A and confirmed two step-scaling functions as well
as the scale setting of ALPHA 98.

†† Uses data of Lüscher 93 and therefore supersedes it.
§§ Converted from αMS(37r

−1
0 ) = 0.1108(25).

+ Also ΛMS/
√
σ = 0.532(8)(+27

−5 ) is quoted.

Table 57: Results for the Λ-parameter from computations using step scaling of the SF-
coupling. Entries without values for Λ computed the running and established perturbative
behaviour at large µ.

9.3.2 Discussion of computations

In Tab. 57 we give results from various determinations of the Λ-parameter. For a clear

3For a variant of the twisted periodic finite volume scheme the 1-loop matching has been computed analyt-
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assessment of the Nf -dependence, the last column also shows results that refer to a common
hadronic scale, r0. As discussed above, the renormalization scale can be chosen large enough
such that αs < 0.2 and the perturbative behaviour can be verified. Consequently only ⋆ is
present for these criteria except for early work where the nl = 2 loop correction to MS was
not yet known and we assigned a ■ concerning the renormalization scale. With dynamical
fermions, results for the step-scaling functions are always available for at least a/L = µa =
1/4, 1/6, 1/8. All calculations have a nonperturbatively O(a) improved action in the bulk.
For the discussed boundary O(a) terms this is not so. In most recent calculations 2-loop
O(a) improvement is employed together with at least three lattice spacings.4 This means a
⋆ for the continuum extrapolation. In other computations only 1-loop ct was available and
we arrive at ◦ . We note that the discretization errors in the step-scaling functions of the
SF coupling are usually found to be very small, at the percent level or below. However, the
overall desired precision is very high as well, and the results in CP-PACS 04 [90] show that
discretization errors at the below percent level cannot be taken for granted. In particular
with staggered fermions (unimproved except for boundary terms) few-percent effects are seen
in Perez 10 [104].

In the work by PACS-CS 09A [106], the continuum extrapolation in the scale setting
is performed using a constant function in a and with a linear function. Potentially the
former leaves a considerable residual discretization error. We here use, as discussed with the
collaboration, the continuum extrapolation linear in a, as given in the second line of PACS-CS
09A [106] results in Tab. 57. After perturbative conversion from a three-flavour result to five
flavours (see Sec. 9.2.1), they obtain

α
(5)

MS
(MZ) = 0.118(3) . (324)

In Ref. [105], the ALPHA collaboration determined Λ
(3)

MS
combining step scaling in ḡ2GF in

the lower-scale region µhad ≤ µ ≤ µ0, and step scaling in ḡ2SF for higher scales µ0 ≤ µ ≤ µPT.
Both schemes are defined with SF boundary conditions. For ḡ2GF a projection to the sector of
zero topological charge is included, Eq. (322) is restricted to the magnetic components, and
c = 0.3. The scales µhad, µ0, and µPT are defined by ḡ2GF(µhad) = 11.3, ḡ2SF(µ0) = 2.012, and
µPT = 16µ0 which are roughly estimated as

1/Lmax ≡ µhad ≈ 0.2 GeV, µ0 ≈ 4 GeV , µPT ≈ 70 GeV . (325)

Step scaling is carried out with an O(a)-improved Wilson quark action [112] and Lüscher-
Weisz gauge action [113] in the low-scale region and an O(a)-improved Wilson quark action
[114] and Wilson gauge action in the high-energy part. For the step scaling using steps of
L/a → 2L/a, three lattice sizes L/a = 8, 12, 16 were simulated for ḡ2GF and four lattice sizes
L/a = (4, ) 6, 8, 12 for ḡ2SF. The final results do not use the small lattices given in parenthesis.

The parameter Λ
(3)

MS
is then obtained via

Λ
(3)

MS
=

Λ
(3)

MS

µPT︸ ︷︷ ︸
perturbation theory

× µPT
µhad︸ ︷︷ ︸

stepscaling

× µhad
fπK︸ ︷︷ ︸

large volume simulation

× fπK︸︷︷︸
experimental data

, (326)

ically [102].
4With 2-loop O(a) improvement we here mean ct including the g40 term and c̃t with the g20 term. For gluonic

observables such as the running coupling this is sufficient for cutoff effects being suppressed to O(g6a).
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where the hadronic scale fπK is fπK = 1
3(2fK + fπ) = 147.6(5) MeV. The first factor on

the right-hand side of Eq. (326) is obtained from αSF(µPT) which is the output from SF
step scaling using Eq. (288) with αSF(µPT) ≈ 0.1 and the 3-loop β-function and the exact
conversion to the MS-scheme. The second factor is essentially obtained from step scaling in
the GF scheme and the measurement of ḡ2SF(µ0) (except for the trivial scaling factor of 16 in
the SF running). The third factor is obtained from a measurement of the hadronic quantity
at large volume.

A large-volume simulation is done for three lattice spacings with sufficiently large volume
and reasonable control over the chiral extrapolation so that the scale determination is precise
enough. The step scaling results in both schemes satisfy renormalization criteria, perturbation
theory criteria, and continuum-limit criteria just as previous studies using step scaling. So
we assign green stars for these criteria.

The dependence of Λ, Eq. (288) with 3-loop β-function, on αs and on the chosen scheme
is discussed in [66]. This investigation provides a warning on estimating the truncation error
of perturbative series. Details are explained in Sec. 9.2.3.

The result for the Λ-parameter is Λ
(3)

MS
= 341(12) MeV, where the dominant error comes

from the error of αSF(µPT) after step scaling in the SF scheme. Using 4-loop matching at the
charm and bottom thresholds and 5-loop running one finally obtains

α
(5)

MS
(MZ) = 0.11852(84) . (327)

Several other results do not have a sufficient number of quark flavours or do not yet contain
the conversion of the scale to physical units (ALPHA 10A [103], Perez 10 [104]). Thus no

value for α
(5)

MS
(MZ) is quoted.

The computation of Ishikawa et al. [100] is based on the gradient-flow coupling with twisted
boundary conditions [99] (TGF coupling) in the pure gauge theory. Again they use c = 0.3.
Step scaling with a scale factor s = 3/2 is employed, covering a large range of couplings from
αs ≈ 0.5 to αs ≈ 0.1 and taking the continuum limit through global fits to the step-scaling
function on L/a = 12, 16, 18 lattices with between 6 and 8 parameters. Systematic errors
due to variations of the fit functions are estimated. Two physical scales are considered: r0/a
is taken from [64] and σa2 from [115] and [116]. As the ratio ΛTGF/ΛMS has not yet been
computed analytically, Ref. [100] determines the 1-loop relation between ḡSF and ḡTGF from
MC simulations performed in the weak coupling region and then uses the known ΛSF/ΛMS.
Systematic errors due to variations of the fit functions dominate the overall uncertainty.

Two extensive Nf = 0 step-scaling studies have been carried out in Dalla Brida 19 [110]
and by Nada and Ramos [109]. They use different strategies for the running from mid to
high energies, but use the same gauge configurations and share the running at low energies
and matching to the hadronic scales. These results are therefore correlated. However, given
the comparatively high value for r0ΛMS, it is re-assuring that these conceptually different
approaches yield perfectly compatible results within errors of similar size of around 1.5% for√
8t0ΛMS = 0.6227(98), or, alternatively r0ΛMS = 0.660(11).
In Dalla Brida 19 [110] two GF-coupling definitions with SF-boundary conditions are

considered, corresponding to (colour-) magnetic and electric components of the action density
respectively. The coupling definitions include the projection to Q = 0, as was also done
in [105]. The flow-time parameter is set to c = 0.3, and both Zeuthen and Wilson flow are
measured. Lattice sizes range from L/a = 8 to L/a = 48, covering up to a factor of 3 in
lattice spacings for the step-scaling function, where both L/a and 2L/a are needed. Lattice
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effects in the step-scaling function are visible but can be extrapolated using global fits with
a2 errors. Some remnant O(a) effects from the boundaries are expected, as their perturbative
cancellation is incomplete. TheseO(a) contaminations are treated as a systematic error on the
data, following [105], and are found to be subdominant. An intermediate reference scale µref
is defined where α = 0.2, and the scales above and below are analyzed separately. Again this
is similar to [105], except that here GF-coupling data is available also at high energy scales.
The GF β-functions are then obtained by fitting to the continuum extrapolated data for the
step-scaling functions. In addition, a nonperturbative matching to the standard SF coupling
is performed above µref for a range of couplings covering a factor of 2. The nonperturbative
β-function for the SF scheme can thus be inferred from the GF β-function. It turns out that
GF schemes are very slow to reach the perturbative regime. Particularly the Λ-parameter
for the magnetic GF coupling shows a large slope in α2, which is the parametric uncertainty
with known 3-loop β-function. Also, convincing contact with the 3-loop β-function is barely
seen down to α = 0.08. This is likely to be related to the rather large 3-loop β-function
coefficients, especially for the magnetic GF scheme [101]. In contrast, once the GF couplings
are matched nonperturbatively to the SF scheme the contact to perturbative running can be
safely made. It is also re-assuring that in all cases the extrapolations (linear in α2) to α = 0
for the Λ-parameters agree very well, and the authors argue in favour of such extrapolations.
Their data confirms that this procedure yields consistent results with the SF scheme for ν = 0,
where such an extrapolation is not required.

The low-energy regime between µref and a hadronic scale µhad is covered again using the
nonperturbative step-scaling function and the derived β-function. Finally, contact between
µhad and hadronic scales t0 and r0 is established using five lattice spacings covering a factor
up to 2.7. The multitude of cross checks of both continuum limit and perturbative trunca-
tion errors make this a study which passes all current FLAG criteria by some margin. The
comparatively high value for r0ΛMS found in this study must therefore be taken very seriously.

In Nada 20 [109], Nada and Ramos provide further consistency checks of [110] for scales
larger than µref . The step-scaling function for c = 0.2 is constructed in two steps, by deter-
mining first the relation between couplings for c = 0.2 and c = 0.4 at the same L and then
increasing L to 2L keeping the flow time fixed (in units of the lattice spacing), so that one
arrives again at c = 0.2 on the 2L volume. The authors demonstrate that the direct construc-
tion of the step-scaling function for c = 0.2 would require much larger lattices in order to
control the continuum limit at the same level of precision. The consistency with [110] for the
Λ-parameter is therefore a highly nontrivial check on the systematic effects of the continuum
extrapolations. The study obtains results for the Λ-parameter (again extrapolating to α = 0)
with a similar error as in [110] using the low-energy running and matching to the hadronic
scale from that reference. For this reason and since gauge configurations are shared between
both papers, these results are not independent of [110], so Dalla Brida 19 will be taken as
representative for both works.

Since FLAG 21 a new step-scaling result with Nf = 0 has appeared in Bribian 21 [33]. It
uses the gradient flow in a volume with twisted periodic boundary conditions for the gauge
field. The volume has two shorter directions by a factor of 3; however, a re-interpretation
as a symmetric physical volume is possible using internal degrees of freedom of the gauge
field. This is a state-of-the-art step-scaling result, the main problem being the poor pertur-
bative behaviour of the gradient-flow coupling. Since the 3-loop β-function is not known, the
parametric uncertainty in estimates of the Λ-parameter is of O(α) and is quite large. The
problem is by-passed by matching nonperturbatively to the SF scheme, which leads to stable

20

http://arxiv.org/abs/2411.04268


Y. Aoki et al. FLAG Review 2024 2411.04268

estimates vs. α2, and the result is
√
t0ΛMS = 0.603(17), or, in units of the Sommer scale,

r0ΛMS = 0.632(20). All FLAG criteria are passed with ⋆, and the data-driven criterion for
the continuum limit is irrelevant in this case.

Scale variations. With a perturbative matching at µ ≈ 80 GeV, we have computed the
change in the determination of αMS(MZ) under scale variations as explained above. The
systematic errors obtained from scale variations are

δ∗(4) = 0.1% , δ(2) = 0.2% δ∗(2) = 0.2% . (328)

Because the perturbative matching is performed at a high-energy scale, the systematic error
obtained from scale variations is negligible.

9.4 The decoupling method

The ALPHA collaboration has proposed and pursued a new strategy to compute the Λ pa-
rameter in QCD with Nf ≥ 3 flavours based on the simultaneous decoupling of Nf ≥ 3 heavy
quarks with RGI mass M [30]. We refer to [12] for a pedagogical introduction. Generically,
for large quark mass M , a running coupling in a mass-dependent renormalization scheme

ḡ2(µ,M)(Nf ) = ḡ2(µ)(Nf=0) +O
(
1/Mk

)
(329)

can be represented by the corresponding Nf = 0 coupling, up to power corrections in 1/M .
The leading power is usually k = 2, however renormalization schemes in finite volume may
have k = 1, depending on the set-up. For example, this is the case with standard SF or open
boundary conditions in combination with a standard mass term. In practice such boundary
contributions can be made numerically small by a careful choice of the scheme’s parameters.
In principle, power corrections can be either (µ/M)k or (Λ/M)k. Fixing µ = µdec, e.g., by
prescribing a value for the mass-independent coupling, such that µdec/Λ = O(1) thus helps
to reduce the need for very large M . Defining ḡ2(µdec,M) = uM at fixed ḡ2(µdec,M = 0),
Eq. (329) translates to a relation between Λ-parameters, which can be cast in the form,

Λ
(Nf )

MS

µdec
P

 M

µdec

µdec

Λ
(Nf )

MS

 =
Λ
(0)

MS

Λ
(0)
s

φ
(Nf=0)
s (

√
uM) +O(M−k) ,

(330)

with the function φs as defined in Eq. (288), for scheme s and Nf = 0. A crucial observation

is that the function P , which gives the ratios of Λ-parameters Λ
(0)

MS
/Λ

(Nf )

MS
, can be evaluated

perturbatively to a very good approximation [29, 117]. Equation (329) also implies a relation
between the couplings in mass-independent schemes, in the theories with Nf and zero flavours,
respectively. In the MS scheme this relation is analogous to Eq. (295),[

ḡ
(Nf=0)

MS
(m⋆)

]2
=
[
ḡ
(Nf )

MS
(m⋆)

]2
× C

(
ḡ
(Nf )

MS
(m⋆)

)
, (331)

where the evaluation of the coupling is done at the scale m⋆ = m
(Nf )

MS
(µ = m⋆). This removes

the leading 1-loop correction of O(g2) in the expansion of the function, C(g) = 1 + c2g
4 +
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O(g6), which is known up to 4-loop order [22–25, 118]. The mass scale m⋆ is in one-to-

one correspondence with the RGI mass M , and g⋆(y) = ḡ
(Nf )

MS
(m⋆) can thus be considered a

function of y ≡ M (Nf )/Λ
(Nf )

MS
. The function P (y) can be evaluated perturbatively in the MS

scheme, as the ratio,

P (y) =
φ
(Nf=0)

MS

(
g⋆(y)

√
C(g⋆(y))

)
φ
(Nf )

MS
(g⋆(y))

. (332)

Note that perturbation theory is only required at the scale set by the heavy-quark mass, which
works better the larger M can be chosen. Given the function P (y), the LHS of Eq. (330) can
be inferred from a Nf = 0 computation of the RHS in the scheme s, if the argument

√
uM of

φ0
s is known (and the ratio ΛMS/Λs for the scheme s). The main challenge then consists in

the computation of the mass-dependent coupling uM for large masses.

9.4.1 Discussion of computations

To put the decoupling strategy to work, ALPHA 22 [32] uses Nf = 3, so that information from
[105] can be used. Using the massless GF coupling in finite volume from this project, µdec is
defined through ḡ2GF(µdec) = 3.949, and thus known in physical units, µdec = 789(15)MeV.
Imposing this condition for lattice sizes between L/a = 12 to L/a = 48, a corresponding
sequence of β-values between 4.302 and 5.174 is obtained (the lattice action is the same
as used by CLS, there for much coarser lattice spacings at β < 3.85). Using the available
information on nonperturbative mass renormalization [119], six values for the O(a)-improved
RGI quark masses are considered at each of these β-values, such that the ratio z = M/µdec
are close to 2, 4, 6, 8, 10, and 12. While great care is taken to implement nonperturbative
O(a) improvement, there is only perturbative 1-loop information on bg, which parameterizes
a mass-dependent rescaling of the bare coupling,

g̃20 = g20(1 + bg(g0)amq), bg(g0) = 0.012×Nfg
2
0 +O(g40).

Here, mq denotes the subtracted bare quark mass, related to M by a renormalization factor
of O(1) at the relevant lattice spacings. Consistent O(a) improvement requires that β̃ = 6/g̃20
be kept fixed as the quark mass is varied. The authors of ALPHA 22 here assume a 100%
uncertainty of the perturbative bg-estimate, which is treated as a systematic error (cf. below).
At the chosen quark-mass parameters, the GF coupling with doubled time extent, T = 2L, is
measured. This GFT coupling is used in order to minimize effects from the time boundaries,
which introduce linear effects in 1/M in the decoupling relation, and also residual lattice
effects linear in a. Both of these effects are monitored and found to be negligible. The
continuum limit is then taken, either separately for each z-value, or using a global fit to all
z-values z > 2, which turns out too small to be useful in the large-M limit (cf. Fig. 9.4.1). The

lattice effects are fitted to O(a2), including an [αMS(1/a)]
Γ̂ term, as expected from Symanzik’s

effective theory with RG improvement [120–124]. The global fit uses the combined arguments
from heavy-quark and Symanzik effective theories to separate the leading-(aM)2 effects with
yet another logarithmic correction term. Cuts in the data are considered for (aM)2 < 0.25
and (aM)2 < 0.16. The continuum-extrapolated values include a systematic error due to
the uncertainty in bg. The fits are repeated for different choices of Γ̂ and Γ̂′ in intervals
constrained by the effective heavy-quark and Symanzik theories, and the variation is used as
an estimate of systematic effects due to the possible presence of such non-power-like cutoff
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effects. The continuum extrapolated GFT coupling defines the starting point for the Nf = 0
running. Before the GF running can be used, a matching from the GFT to GF scheme is
done to high precision in the Nf = 0 theory. The running in Nf = 0 is taken from Dalla
Brida 19 [110] and the results are then inserted into the Eq. (330), for each of the available
M -values. This defines “effective” Λ-parameters, equal to the asymptotic value up to 1/M2

effects. Taking the z → ∞ limit (again allowing for a logarithmic correction with exponent
Γm) then yields the final result, with the scale set using

√
t0 from Ref. [125],

Λ
(3)

MS
= 336(10)(6)bg(3)Γm MeV = 336(12) MeV (333)

which translates to αs(mZ) = 0.11823(84). Despite some common elements with ALPHA 17,
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Figure 37: The decoupling limit M → ∞ in ALPHA 22, Ref. [32].

the authors emphasize that the decoupling method is largely independent, with the overlap
in squared error amounting to 28 percent. This is due to the fact that the error in ALPHA 17
is dominated by the Nf = 3 step-scaling procedure at high energy, and this part is completely
replaced by the Nf = 0 result by Dalla Brida 19 [110]. ALPHA 22 also give the covariance
matrix between both results which allows for combining both results with correlations taken
into account.

The FLAG criteria are only indirectly applicable; decoupling relies on the step-scaling
analysis with Nf = 0 in Dalla Brida 19 [110], which passes all FLAG criteria (cf. Sect. 9.3).
Except for the (well-established, cf. Refs. [29, 117]) perturbative evaluation of the function
P (y), perturbation theory is only applied in the Nf = 0 theory at very high energy, which
yields a ⋆ for perturbative behaviour and renormalization scale. Using the FLAG criterion
for continuum extrapolations (the constraint on values of αeff is not applicable here) the
relevant scale is M , and the continuum extrapolations are based on data cut at aM < 0.5 or
aM < 0.4, which leaves 3–4 values satisfying this cut even at the largest mass of O(10 GeV). A
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remaining uncertainty of O(aM) due to a perturbative estimate of bg is treated as a systematic
uncertainty, so that full O(a) improvement is expected to be realized within the errors. This is
confirmed by—now available—nonperturbative data on bg [126], and we use ⋆ for continuum
extrapolations. With these errors the distance of the extrapolated result is less than one
sigma away from the last data point, i.e., δ(min) ≈ 1 for the data-driven criterion.

Final remark: The decoupling method offers scope for a further error reduction, by using
the result for bg and both, improved scale setting and improved Nf = 0 step-scaling results.

In Tab. 58 we list the result.
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scale ΛMS[MeV] r0ΛMS

ALPHA 22 [32] 2+1 A ⋆ ⋆ ⋆
√
t0 [125] 336(12) ∗ 0.804(29) ∗

∗ α
(5)

MS
(MZ) = 0.11823(84); r0ΛMS determined using r0 = 0.472 fm

Table 58: Decoupling result.

9.5 αs from the potential at short distances

9.5.1 General considerations

The basic method was introduced in Ref. [127] and developed in Ref. [128]. The force or
potential between an infinitely massive quark and antiquark pair defines an effective coupling
constant via

F (r) =
dV (r)

dr
= CF

αqq(r)

r2
. (334)

The coupling can be evaluated nonperturbatively from the potential through a numerical dif-
ferentiation, see below. In perturbation theory one also defines couplings in different schemes
αV̄ , αV via

V (r) = −CF
αV̄ (r)

r
, or Ṽ (Q) = −CF

αV (Q)

Q2
, (335)

where one fixes the unphysical constant in the potential by limr→∞ V (r) = 0, which is com-
patible with fixed-order perturbation theory. Ṽ (Q) is the Fourier transform of V (r). Nonper-
turbatively, the subtraction of a constant in the potential introduces an additional renormal-
ization constant, the value of V (rref) at some distance rref . Perturbatively, it is believed to
entail a renormalon ambiguity. In perturbation theory, the different definitions are all simply
related to each other, and their perturbative expansions are known including the α4

s, α
4
s logαs

and α5
s logαs, α

5
s(logαs)

2 terms [71, 73, 74, 129–135].
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The potential V (r) is determined from ratios of Wilson loops, W (r, t), which behave as

⟨W (r, t)⟩ = |c0|2e−V (r)t +
∑
n̸=0

|cn|2e−Vn(r)t , (336)

where t is taken as the temporal extension of the loop, r is the spatial one and Vn are
excited-state potentials. To improve the overlap with the ground state, and to suppress the
effects of excited states, t is taken large. Also various additional techniques are used, such
as a variational basis of operators (spatial paths) to help in projecting out the ground state.
Furthermore some lattice-discretization effects can be reduced by averaging over Wilson loops
related by rotational symmetry in the continuum.

In order to reduce discretization errors it is of advantage to define the numerical derivative
giving the force as

F (rI) =
V (r)− V (r − a)

a
, (337)

where rI is chosen so that at tree level the force is the continuum force. F (rI) is then a
‘tree-level improved’ quantity and similarly the tree-level improved potential can be defined
[136].

Lattice potential results are in position space, while perturbation theory is naturally
computed in momentum space at large momentum. Usually, the Fourier transform of the
perturbative expansion is then matched to lattice data.

Finally, as was noted in Sec. 9.2.1, a determination of the force can also be used to
determine the scales r0, r1, by defining them from the static force by

r20F (r0) = 1.65 , r21F (r1) = 1 . (338)

9.5.2 Discussion of computations

In Tab. 59, we list results of determinations of r0ΛMS (together with ΛMS using the scale
determination of the authors).

The first determinations in the three-colour Yang Mills theory are by UKQCD 92 [128] and
Bali 92 [149] who used αqq, Eq. (334), as explained above, but not in the tree-level improved
form. Rather a phenomenologically determined lattice-artifact correction was subtracted from
the lattice potentials. The comparison with perturbation theory was on a more qualitative
level on the basis of a 2-loop β-function (nl = 1) and a continuum extrapolation could not
be performed as yet. A much more precise computation of αqq with continuum extrapolation
was performed in Refs. [64, 136]. Satisfactory agreement with perturbation theory was found
[136] but the stability of the perturbative prediction was not considered sufficient to be able
to extract a Λ parameter.

In Brambilla 10 [148] the same quenched lattice results of Ref. [136] were used and a
fit was performed to the continuum potential, instead of the force. Perturbation theory to
nl = 3 loop was used including a resummation of terms α3

s(αs lnαs)
n and α4

s(αs lnαs)
n. Close

agreement with perturbation theory was found when a renormalon subtraction was performed.
Note that the renormalon subtraction introduces a second scale into the perturbative formula
which is absent when the force is considered.

Bazavov 14 [141] updates Bazavov 12 [142] and modifies this procedure somewhat. They
consider the perturbative expansion for the force. They set µ = 1/r to eliminate logarithms
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scale ΛMS[MeV] r0ΛMS

Ayala 20 [137] 2+1 A ◦ ⋆ ◦ r1 = 0.3106(17) fmc 338(13) 0.802(31)
TUMQCD 19 [138] 2+1 A ◦ ⋆ ◦ r1 = 0.3106(17) fmc 314+16

−8 0.745(+38
−19)

Takaura 18 [139, 140] 2+1 A ■ ◦ ◦ √
t0 = 0.1465(25)fma 334(10)(+20

−18)
b 0.799(51)+

Bazavov 14 [141] 2+1 A ◦ ⋆ ◦ r1 = 0.3106(17) fmc 315(+18
−12)

d 0.746(+42
−27)

Bazavov 12 [142] 2+1 A ◦† ◦ ◦# r0 = 0.468 fm 295(30) ⋆ 0.70(7)⋆⋆

Karbstein 18 [143] 2 A ◦ ◦ ◦ r0 = 0.420(14) fme 302(16) 0.643(34)
Karbstein 14 [144] 2 A ◦ ◦ ◦ r0 = 0.42 fm 331(21) 0.692(31)

ETM 11C [145] 2 A ◦ ◦ ◦ r0 = 0.42 fm 315(30)§ 0.658(55)

Brambilla 23 [37] 0 A ◦ ◦ ⋆
√
8t0 = 0.9569(66)r0 0.657+23

−28

Husung 20 [146] 0 C ◦ ⋆ ⋆ no quoted value for ΛMS

Husung 17 [147] 0 C ◦ ⋆ ⋆ r0 = 0.50 fm 232(6) 0.590(16)

Brambilla 10 [148] 0 A ◦ ⋆ ◦†† 266(13)+ 0.637(+32
−30)

††

UKQCD 92 [128] 0 A ⋆ ◦++
■

√
σ = 0.44 GeV 256(20) 0.686(54)

Bali 92 [149] 0 A ⋆ ◦++
■

√
σ = 0.44 GeV 247(10) 0.661(27)

a Scale determined from t0 in Ref. [39].

b α
(5)

MS
(MZ) = 0.1179(7)(+13

−12).
c Determination on lattices with mπL = 2.2− 2.6. Scale from r1 [54] as determined from fπ in Ref. [62].
d α

(3)

MS
(1.5GeV) = 0.336(+12

−8 ), α
(5)

MS
(MZ) = 0.1166(+12

−8 ).
e Scale determined from fπ, see [57].
† Since values of αeff within our designated range are used, we assign a ◦ despite values of αeff up to

αeff = 0.5 being used.
# Since values of 2a/r within our designated range are used, we assign a ◦ although only values of

2a/r ≥ 1.14 are used at αeff = 0.3.
⋆ Using results from Ref. [63].

⋆⋆ α
(3)

MS
(1.5GeV) = 0.326(19), α

(5)

MS
(MZ) = 0.1156(+21

−22).
§ Both potential and r0/a are determined on a small (L = 3.2r0) lattice.

†† Uses lattice results of Ref. [64], some of which have very small lattice spacings where according to more
recent investigations a bias due to the freezing of topology may be present.

+ Our conversion using r0 = 0.472 fm.
++ We give a ◦ because only a NLO formula is used and the error bars are very large; our criterion does

not apply well to these very early calculations.

Table 59: Short-distance potential results.

and then integrate the force to obtain an expression for the potential. The resulting integration
constant is fixed by requiring the perturbative potential to be equal to the nonperturbative
one exactly at a reference distance rref and the two are then compared at other values of r.
As a further check, the force is also used directly.

For the quenched calculation of Brambilla 10 [148] very small lattice spacings, a ∼
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0.025 fm, were available from Ref. [136]. For ETM 11C [145], Bazavov 12 [142], Karbstein
14 [144] and Bazavov 14 [141] using dynamical fermions such small lattice spacings are not
yet realized (Bazavov 14 reaches down to a ∼ 0.041 fm). They all use the tree-level improved
potential as described above. We note that the value of ΛMS in physical units by ETM 11C
[145] is based on a value of r0 = 0.42 fm. This is at least 10% smaller than the large majority
of other values of r0. Also the values of r0/a on the finest lattices in ETM 11C [145] and r1/a
for Bazavov 14 [141] come from rather small lattices with mπL ≈ 2.4, 2.2 respectively.

Instead of the procedure discussed previously, Karbstein 14 [144] reanalyzes the data of
ETM 11C [145] by first estimating the Fourier transform Ṽ (p) of V (r) and then fitting the
perturbative expansion of Ṽ (p) in terms of αMS(p). Of course, the Fourier transform requires
some modelling of the r-dependence of V (r) at short and at large distances. The authors
fit a linearly rising potential at large distances together with string-like corrections of order
r−n and define the potential at large distances by this fit.5 Recall that for observables in
momentum space we take the renormalization scale entering our criteria as µ = q, Eq. (307).
The analysis (as in ETM 11C [145]) is dominated by the data at the smallest lattice spacing,
where a controlled determination of the overall scale is difficult due to possible finite-size
effects. Karbstein 18 [143] is a reanalysis of Karbstein 14 and supersedes it. Some data with
a different discretization of the static quark is added (on the same configurations) and the
discrete lattice results for the static potential in position space are first parameterized by a
continuous function, which then allows for an analytical Fourier transformation to momentum
space.

Similarly also for Takaura 18 [139, 140] the momentum space potential Ṽ (Q) is the central
object. Namely, they assume that renormalon/power-law effects are absent in Ṽ (Q) and only
come in through the Fourier transformation. They provide evidence that renormalon effects
(both u = 1/2 and u = 3/2) can be subtracted and arrive at a nonperturbative term kΛ3

MS
r2.

Two different analyses are carried out with the final result taken from “Analysis II”. Our
numbers including the evaluation of the criteria refer to it. Together with the perturbative
3-loop (including the α4

s logαs term) expression, this term is fitted to the nonperturbative
results for the potential in the region 0.04 fm ≤ r ≤ 0.35 fm, where 0.04 fm is r = a on
the finest lattice. The nonperturbative potential data originates from JLQCD ensembles
(Symanzik-improved gauge action and Möbius domain-wall quarks) at three lattice spacings
with a pion mass around 300 MeV. Since at the maximal distance in the analysis we find
αMS(2/r) = 0.43, the renormalization-scale criterion yields a ■ . The perturbative behaviour
is ◦ because of the high orders in perturbation theory known. The continuum-limit criterion
yields a ◦ .

One of the main issues for all these computations is whether the perturbative running of
the coupling constant has been reached. While for Nf = 0 fermions Brambilla 10 [148] reports
agreement with perturbative behaviour at the smallest distances, Husung 17 (which goes to
shorter distances) finds relatively large corrections beyond the 3-loop αqq. For dynamical
fermions, Bazavov 12 [142] and Bazavov 14 [141] report good agreement with perturbation
theory after the renormalon is subtracted or eliminated.

A second issue is the coverage of configuration space in some of the simulations, which use
very small lattice spacings with periodic boundary conditions. Affected are the smallest two
lattice spacings of Bazavov 14 [141] where very few tunnelings of the topological charge occur

5Note that at large distances, where string breaking is known to occur, this is not any more the ground-state
potential defined by Eq. (336).
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[54]. With present knowledge, it also seems possible that the older data by Refs. [64, 136]
used by Brambilla 10 [148] are partially obtained with (close to) frozen topology.

The computation in Husung 17 [147], for Nf = 0 flavours, first determines the coupling
ḡ2qq(r, a) from the force and then performs a continuum extrapolation on lattices down to

a ≈ 0.015 fm, using a step-scaling method at short distances, r/r0<∼ 0.5. Using the 4-loop
βqq function this allows r0Λqq to be estimated, which is then converted to the MS scheme.
αeff = αqq ranges from ∼ 0.17 to large values; we give ◦ for renormalization scale and ⋆
for perturbative behaviour. The range aµ = 2a/r ≈ 0.37–0.14 leads to a ⋆ in the continuum
extrapolation. Recently these calculations have been extended in Husung 20 [146]. A finer
lattice spacing of a = 0.01 fm (scale from r0 = 0.5 fm) is reached and lattice volumes up to
L/a = 192 are simulated (in Ref. [147] the smallest lattice spacing is 0.015 fm). The Wilson
action is used despite its significantly larger cutoff effects compared to Symanzik-improved
actions; this avoids unitarity violations, thus allowing for a clean ground-state extraction via
a generalized eigenvalue problem. Open boundary conditions are used to avoid the topology-
freezing problem. Furthermore, new results for the continuum approach are employed, which
determine the cutoff dependence at O(a2) including the exact coupling-dependent terms, in
the asymptotic region where the Symanzik effective theory is applicable [122]. An ansatz for
the remaining higher-order cutoff effects at O(a4) is propagated as a systematic error to the
data, which effectively discards data for r/a < 3.5. The large-volume step-scaling function
with step factor 3/4 is computed and compared to perturbation theory. For αqq > 0.2 there
is a noticeable difference between the 2-loop and 3-loop results. Furthermore, the ultra-soft
contributions at 4-loop level give a significant contribution to the static QQ̄ force. While this
study is for Nf = 0 flavours it does raise the question whether the weak-coupling expansion for
the range of r-values used in present analyses of αs is sufficiently reliable. Around αqq ≈ 0.21
the differences get smaller but the error increases significantly, mainly due to the propagated

lattice artifacts. The dependence of Λ
nf=0

MS

√
8t0 on α3

qq is very similar to the one observed
in the previous study but no value for its αqq → 0 limit is quoted. Husung 20 [146] is more
pessimistic about the error on the Λ parameter stating the relative error has to be 5% or
larger, while Husung 17 quotes a relative error of 3%.

In 2+1-flavour QCD two new papers appeared on the determination of the strong coupling
constant from the static quark anti-quark potential after the FLAG 19 report [137, 138]. In
TUMQCD 19 [138]6 the 2014 analysis of Bazavov 14 [141] has been extended by including
three finer lattices with lattice spacing a = 0.035, 0.030 and 0.025 fm as well as lattice results
on the free energy of static quark anti-quark pair at nonzero temperature. On the new fine
lattices the effect of freezing topology has been observed, however, it was verified that this does
not affect the potential within the estimated errors [150, 151]. The comparison of the lattice
result on the static potential has been performed in the interval r = [rmin, rmax], with rmax =
0.131, 0.121, 0.098, 0.073 and 0.055 fm. The main result quoted in the paper is based on the
analysis with rmax = 0.073 fm [138]. Since the new study employs a much wider range in r
than the previous one [141] we give it a ⋆ for the perturbative behaviour. Since αeff = αqq

varies in the range 0.2–0.4 for the r values used in the main analysis we give ◦ for the
renormalization scale. Several values of rmin have been used in the analysis, the largest being
rmin/a =

√
8 ≃ 2.82, which corresponds to aµ ≃ 0.71. Therefore, we give a ◦ for continuum

extrapolation in this case. An important difference compared to the previous study [141] is
the variation of the renormalization scale. In Ref. [141] the renormalization scale was varied

6The majority of authors are the same as in [141].
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by a factor of
√
2 around the nominal value of µ = 1/r, in order to exclude very low scales,

for which the running of the strong coupling constant is no longer perturbative. In the new
analysis the renormalization scale was varied by a factor of two. As the result, despite the
extended data set and shorter distances used in the new study the perturbative error did not
decrease [138]. We also note that the scale dependence turned out to be nonmonotonic in the
range µ = 1/(2r)–2/r [138]. The final result reads (“us” stands for “ultra-soft”),

Λ
(Nf=3)

MS
= 314.0± 5.8(stat)± 3.0(lat)± 1.7(scale)+13.4

−1.8 (pert)± 4.0(pert. us) MeV

= 314+16
−08 MeV , (339)

where all errors were combined in quadrature. This is in very good agreement with the
previous determination [141].

The analysis was also applied to the singlet static quark anti-quark free energy at short
distances. At short distances the free energy is expected to be the same as the static potential.
This is verified numerically in the lattice calculations TUMQCD 19 [138] for rT < 1/4 with
T being the temperature. Furthermore, this is confirmed by the perturbative calculations
at T > 0 at NLO [152]. The advantage of using the free energy is that it gives access to
much shorter distances. On the other hand, one has fewer data points because the condition
rT < 1/4 has to be satisfied. The analysis based on the free energy gives

Λ
(Nf=3)

MS
= 310.9± 11.3(stat)± 3.0(lat)± 1.7(scale)+5.6

−0.8(pert)± 2.1(pert. us) MeV

= 311(13) MeV, (340)

in good agreement with the above result and thus, providing additional confirmation of it.
The analysis of Ayala 20 [137] uses a subset of data presented in TUMQCD 19 [138] with

the same correction of the lattice effects. For this reason the continuum extrapolation gets ◦ ,
too. They match to perturbation theory for 1/r > 2 GeV, which corresponds to αeff = αqq =
0.2–0.4. Therefore, we give ◦ for the renormalization scale. They verify the perturbative
behaviour in the region 1 GeV < 1/r < 2.9 GeV, which corresponds to variation of α3

eff by
a factor of 3.34. However, the relative error on the final result has δΛ/Λ ≃ 0.035 which is
larger than α3

eff = 0.011. Therefore, we give a ⋆ for the perturbative behaviour in this case.
The final result for the Λ-parameter reads:

Λ
(Nf=3)

MS
= 338± 2(stat)± 8(matching)± 10(pert) MeV = 338(13)MeV . (341)

This is quite different from the above result. This difference is mostly due to the organization
of the perturbative series. The authors use ultra-soft (log) resummation, i.e., they resum
the terms α3+n

s lnn αs to all orders instead of using fixed-order perturbation theory. They
also include what is called the terminant of the perturbative series associated to the leading
renormalon of the force [137]. When they use fixed-order perturbation theory they obtain
very similar results to Refs. [138, 141]. It has been argued that log resummation cannot be
justified since for the distance range available in the lattice studies αs is not small enough
and the logarithmic and nonlogarithmic higher-order terms are of a similar size [141]. On the
other hand, the resummation of ultra-soft logs does not lead to any anomalous behaviour of
the perturbative expansion like large scale dependence or bad convergence [137].

To obtain the value of Λ
(Nf=3)

MS
from the static potential we combine the results in Eqs. (339)

and (341) using the weighted average with the weight given by the perturbative error and
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using the difference in the central value as the error estimate. This leads to

Λ
(Nf=3)

MS
= 330(24) MeV , (342)

from the static potential determination. In the case of TUMQCD 19, where the perturbative
error is very asymmetric we used the larger upper error for the calculation of the corresponding
weight.

A new analysis with Nf = 0 has been presented in Brambilla 23 [37] where gradient flow
is used to study the static force. The use of gradient flow allows an improved determination
of the static force while adding to the problem a new scale, the gradient flow time τF . The
lattice volumes used are 40× 203, 52× 263, 60× 302 and 80× 403, with corresponding lattice
spacings ranging from 0.06 to 0.03 fm, using the Wilson action. On the finest lattice an
increase in the autocorrelation of the topological charge is observed and taken into account
by increasing the Monte Carlo time in-between measurements. The reference scale t0, used
throughout the analysis, is obtained from a measurement of the action density by imposing

τF ⟨1
4
GµνG

µν⟩
∣∣∣∣
τF=t0

= 0.3 . (343)

The static force is computed from the insertion of the chromoelectric field in the expectation
value of the Wilson loop,

F (r) = −i lim
T→∞

⟨Tr [Wr×T r̂ · gE(r, t)]⟩
⟨TrWr×T ⟩

, (344)

and tree-level improvement is used to improve the extrapolation to the continuum limit. The
dimensionless product r2F (r) yields the observable used for the extraction of αs.

Results extrapolated to τF = 0 are used for a conventional analysis along the lines of
previous publications using the static force. The fit uses the perturbative expansion of
the force including 3-loop contributions and leading ultrasoft logarithms. Data points with
r/
√
t0 ∈ [0.80, 1.15] are included in the fit, which yields

√
8t0Λ

(Nf=0)

MS
= 0.6353± 0.0032(stat)± 0.0013(AIC) , (345)

where the label AIC refers to the Bayesian procedure for combining results from different fit
ranges based on Akaike’s information criterion, as proposed in Ref. [153]. Note that the error
on this result is still dominated by statistics rather than the systematics related to the choice
of fitting range. The matching scale in these fits is the usual scale µ = 1/r.

Measurements at τF ̸= 0 allow an alternative way to extract the strong coupling constant
by fitting to the perturbative expression for the force at finite flow time. The latter pertur-
bative expansion is only known at 1-loop, which is used as a correction of the higher-order
result at τF = 0. The best result is obtained by fitting the r-dependence at fixed values of
τF , which yields

√
8t0Λ

(Nf=0)

MS
= 0.629+22

−26 . (346)

The scale of perturbative matching is defined as

µ =
1√

sr2 + 8bτF
. (347)
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The uncertainty related to the truncation of the perturbative expansion is estimated by scale
variations, where b = 0 and s is varied by a factor

√
2 in the zero-flow-time part of the

perturbative expansion, while s = 1 and b = 0, 1,−0.5 in the finite-flow-time part. The
central value corresponds to s = 1, b = 0. The error on the result above is dominated by the
s-scale variation. The ratio

√
t0/r0 is computed in Brambilla 23 and allows to quote a final

result in units of r0,

r0Λ
(Nf=0)

MS
= 0.657+23

−28 . (348)

The continuum extrapolation is based on four lattice spacings. From the data reported in the
figures, we see that for r = 0.7323

√
t0, the effective coupling is below the requested threshold

of 0.03, while the lattice spacing is such that 0.2321 ≤ µa ≤ 0.4916. Therefore, we can give
a ⋆ for the continuum extrapolation. Fits to the perturbative behaviour are performed for
0.27 ≤ αeff ≤ 0.36 and nℓ = 3 in the perturbative expansion. Hence, αnℓ

eff changes by a factor
of 2.37, which is 5% above the threshold of (3/2)2. We feel in this case we can award a ◦ for
the perturbative behaviour. Finally, given the range of values for αeff quoted above, we give
a ◦ for the renormalization scale.

Scale variations. The perturbative matching for the static potential is done at lower scales,
µ = 1.5, 2.5, 5.0 GeV. We have computed the change in the determination of αMS(MZ) as
explained in Sec. 9.1. The systematic errors depend on the value of the perturbative matching
scale. We obtain

Q = 1.5 GeV

δ(2) = 2.6% δ∗(2) = 2.7% . (349)

The value of δ∗(4) cannot be computed in this case, because the matching scale is low,
already at the boundary of the region where the perturbative expansion can be trusted.

Q = 2.5 GeV

δ∗(4) = 0.9% , δ(2) = 1.5% δ∗(2) = 1.5% . (350)

Q = 5.0 GeV

δ∗(4) = 0.4% , δ(2) = 0.8% δ∗(2) = 0.8% . (351)

Note that in the last two cases it was possible to compute δ∗(4).

For the larger values of Q, the error obtained from scale variations is very similar to the error
quoted in previous editions of FLAG, where scale variations were not performed systemati-
cally. For Q = 1.5 GeV the error is larger, as expected since the matching of perturbation
theory happens at lower energy.

9.6 αs from the light-quark vacuum polarization in momentum/position
space

9.6.1 General considerations

Except for the calculation Cali 20 [48], where position space is used (see below), the light-
flavour-current two-point function is usually evaluated in momentum space, in terms of the
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vacuum-polarization function. Assuming Nf = 3 flavours in the isospin limit, with flavour
nonsinglet currents consisting of up and down quarks, Ja

µ (a = 1, . . . , 3), the momentum
representation takes the form

⟨Ja
µJ

b
ν⟩ = δab[(δµνQ

2 −QµQν)Π
(1)
J (Q)−QµQνΠ

(0)
J (Q)] , (352)

where Qµ is a space-like momentum and Jµ ≡ Vµ for a vector current and Jµ ≡ Aµ for an

axial-vector current.7 Defining ΠJ(Q) ≡ Π
(0)
J (Q) + Π

(1)
J (Q), the operator product expansion

(OPE) of ΠV/A(Q) is given by

ΠV/A|OPE(Q
2, αs)

= c+ C
V/A
1 (Q2) + CV/A

m (Q2)
m̄2(Q)

Q2
+

∑
q=u,d,s

C
V/A
q̄q (Q2)

⟨mq q̄q⟩
Q4

+C
V/A
GG (Q2)

⟨αsGG⟩
Q4

+O(Q−6) , (353)

for large Q2. The perturbative coefficient functions C
V/A
X (Q2) for the operators X (X = 1, q̄q,

GG) are given as C
V/A
X (Q2) =

∑
i≥0

(
C

V/A
X

)(i)
αi
s(Q

2) and m̄ is the running mass of the mass-

degenerate up and down quarks. C
V/A
1 is known including α4

s in a continuum renormalization

scheme such as the MS scheme [155–158]. Nonperturbatively, there are terms in C
V/A
X that

do not have a series expansion in αs. For an example for the unit operator see Ref. [159].
The term c is Q-independent and divergent in the limit of infinite ultraviolet cutoff. However
the Adler function defined as

D(Q2) ≡ −Q2dΠ(Q
2)

dQ2
, (354)

is a scheme-independent finite quantity, which gives rise to an effective coupling. There-
fore, one can determine the running coupling constant in the MS scheme from the vacuum-
polarization function computed by a lattice-QCD simulation. Of course, there is the choice
whether to use the vector or the axial-vector channel, or both, the canonical choice being
ΠV+A = ΠV + ΠA. While perturbation theory does not distinguish between these channels,
the nonperturbative contributions are different, and the quality of lattice data may differ, too.
For a given choice, the lattice data of the vacuum polarization is fitted with the perturbative
formula Eq. (353) with fit parameter ΛMS parameterizing the running coupling αMS(Q

2).
While there is no problem in discussing the OPE at the nonperturbative level, the ‘con-

densates’ such as ⟨αsGG⟩ are ambiguous, since they mix with lower-dimensional operators
including the unity operator. Therefore, one should work in the high-Q2 regime where power
corrections are negligible within the given accuracy. Thus setting the renormalization scale
as µ ≡

√
Q2, one should seek, as always, the window ΛQCD ≪ µ≪ a−1.

9.6.2 Definitions in position space

The two-point current correlation functions in position space contain the same physical infor-
mation as in momentum space, but the technical details are sufficiently different to warrant

7For the general mass-nondegenerate case with SU(3) flavour nonsinglet currents see, for example, Ref. [154].
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a separate discussion. The (Euclidean) current-current correlation function for Jµ
ff ′ (with

flavour indices f, f ′) is taken to be either the flavour nondiagonal vector or axial-vector cur-
rent, with the Lorentz indices contracted,

CA,V(x) = −
∑
µ

〈
Jµ
ff ′A,V(x)J

µ
f ′fA,V(0)

〉
=

6

π4(x2)3

(
1 +

αs

π
+O(α2)

)
. (355)

In the chiral limit, the perturbative expansion is known to α4
s [160], and is identical for vector

and axial-vector correlators. The only scale is set by the Euclidean distance µ = 1/|x| and
the effective coupling can thus be defined as

αeff(µ = 1/|x|) = π
[
(x2)3(π4/6)CA,V(x)− 1

]
. (356)

As communicated to us by the authors of [48], there is a typo in Eq. (35) of [160]. For future
reference, the numerical coefficients for the 3-loop conversion

αeff(µ) = αMS(µ) + c1α
2
MS

(µ) + c2α
3
MS

(µ) + c3α
4
MS

(µ), (357)

should read
c1 = −1.4346, c2 = 0.16979, c3 = 3.21120 . (358)

9.6.3 Discussion of computations

Results using this method in momentum space are, to date, only available using overlap
fermions or domain-wall fermions. Cali 20 [48] consider vacuum polarization in position
space using O(a)-improved Wilson fermions. The results are collected in Tab. 60 for Nf = 2,
JLQCD/TWQCD 08C [161] and for Nf = 2 + 1, JLQCD 10 [76], Hudspith 18 [77] and Cali
20 [48].

We first discuss the results of JLQCD/TWQCD 08C [161] and JLQCD 10 [76]. The fit to
Eq. (353) is done with the 4-loop relation between the running coupling and ΛMS. It is found
that without introducing fit parameters for condensate contributions, the momentum scale
where the perturbative formula gives good agreement with the lattice results is very narrow,
aQ ≃ 0.8–1.0. When fit parameters for condensate contributions are included the perturbative
formula gives good agreement with the lattice results for the extended range aQ ≃ 0.6–1.0.
Since there is only a single lattice spacing a ≈ 0.11 fm there is a ■ for the continuum limit.
The renormalization scale µ is in the range of Q = 1.6–2 GeV. Approximating αeff ≈ αMS(Q),
we estimate that αeff = 0.25–0.30 for Nf = 2 and αeff = 0.29–0.33 for Nf = 2 + 1. Thus we
give a ◦ and ■ for Nf = 2 and Nf = 2+ 1, respectively, for the renormalization scale and a
■ for the perturbative behaviour.

A further investigation of this method was initiated in Hudspith 15 [162] and completed
by Hudspith 18 [77] (see also [164]) based on domain-wall fermion configurations at three
lattice spacings, a−1 = 1.78, 2.38, 3.15 GeV, with three different light-quark masses on the
two coarser lattices and one on the fine lattice. An extensive discussion of condensates, using
continuum finite-energy sum rules was employed to estimate where their contributions might
be negligible. It was found that even up to terms of O((1/Q2)8) (a higher order than depicted
in Eq. (353) but with constant coefficients) no single condensate dominates and apparent
convergence was poor for low Q2 due to cancellations between contributions of similar size
with alternating signs. (See, e.g., the list given by Hudspith 15 [162].) Choosing Q2 to be
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scale ΛMS[MeV] r0ΛMS

Cali 20 [48] 2+1 A ◦ ⋆ ⋆ mΥ
§ 342(17) 0.818(41)a

Hudspith 18 [77] 2+1 P ◦ ◦ ■ mΩ
⋆ 337(40) 0.806(96)b

Hudspith 15 [162] 2+1 C ◦ ◦ ■ mΩ
⋆ 300(24)+ 0.717(58)

JLQCD 10 [76] 2+1 A ■ ■ ■ r0 = 0.472 fm 247(5)† 0.591(12)

JLQCD/TWQCD 08C [161] 2 A ◦ ■ ■ r0 = 0.49 fm 234(9)(+16
−0 ) 0.581(22)(+40

−0 )

§ via t0/a
2, still unpublished. We use r0 = 0.472 fm

⋆ Determined in [163].
a Evaluates to α

(5)

MS
(MZ) = 0.11864(114)

In conversion to r0Λ we used r0 = 0.472 fm.
b α

(5)

MS
(MZ) = 0.1181(27)(+8

−22). ΛMS determined by us from α
(3)

MS
(2GeV) = 0.2961(185). In conversion to r0Λ

we used r0 = 0.472 fm.
+ Determined by us from α

(3)

MS
(2 GeV) = 0.279(11). Evaluates to α

(5)

MS
(MZ) = 0.1155(18).

† α
(5)

MS
(MZ) = 0.1118(3)(+16

−17).

Table 60: Results from the vaccum polarization in both momentum and position space.

at least ∼ 3.8GeV2 mitigated the problem, but then the coarsest lattice had to be discarded,
due to large lattice artefacts. So this gives a ■ for continuum extrapolation. With the higher
Q2 the quark-mass dependence of the results was negligible, so ensembles with different quark
masses were averaged over. A range of Q2 from 3.8–16 GeV2 gives αeff = 0.31–0.22, so there
is a ◦ for the renormalization scale. The value of α3

eff reaches ∆αeff/(8πb0αeff) and thus
gives a ◦ for perturbative behaviour. In Hudspith 15 [162] (superseded by Hudspith 18 [77])
about a 20% difference in ΠV (Q

2) was seen between the two lattice spacings and a result is
quoted only for the smaller a.

9.6.4 Vacuum polarization in position space

Cali 20 [48] evaluate the light-current two-point function in position space. The two-point
functions for the nonperturbatively renormalized (nonsinglet) flavour currents is computed
for distances |x| between 0.1 and 0.25 fm and extrapolated to the chiral limit. The available
CLS configurations are used for this work, with lattice spacings between 0.039 and 0.086 fm.
Despite fully nonperturbative renormalization and O(a) improvement, the remaining O(a2)
effects, as measured by O(4) symmetry violations, are very large, even after subtraction of
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tree-level lattice effects. Therefore the authors performed a numerical stochastic perturbation
theory (NSPT) simulation in order to determine the lattice artifacts at O(g2). Only after
subtraction of these effects the constrained continuum extrapolations from three different lat-
tice directions to the same continuum limit are characterized by reasonable χ2-values, so the
feasibility of the study crucially depends on this step. Interestingly, there is no subtraction
performed of nonperturbative effects. For instance, chiral symmetry breaking would manifest
itself in a difference between the vector and the axial-vector two-point functions, and is invisi-
ble to perturbation theory, where these two-point functions are known to α4

s [160]. According
to the authors, phenomenological estimates suggest that a difference of 1.5% between the
continuum correlators would occur around 0.3 fm and this difference would not be resolvable
by their lattice data. Equality within their errors is confirmed for shorter distances. We note,
however, that chiral symmetry breaking effects are but one class of nonperturbative effects,
and their smallness does not allow for the conclusion that such effects are generally small. In
fact, the need for explicit subtractions in momentum space analyses may lead one to suspect
that such effects are not negligible at the available distance scales. For the determination of

Λ
Nf=3

MS
the authors limit the range of distances to 0.13–0.19 fm, where αeff ∈ [0.2354, 0.3075]

(private communication by the authors). These effective couplings are converted to MS cou-
plings at the same scales µ = 1/|x| by solving Eq. (357) numerically. Central values for
the Λ-parameter thus obtained are in the range 325–370 MeV (using the β-function at 5-
loop order) and a weighted average yields the quoted result 342(17) MeV, where the average
emphasizes the data around |x| = 0.16 fm, or µ = 1.3 GeV.

Applying the FLAG criteria the range of lattice spacings yields ⋆ for the continuum
extrapolation. However, the FLAG criterion implicitly assumes that the remaining cutoff
effects after nonperturbative O(a) improvement are small, which is not the case here. Some
hypercubic lattice artefacts are still rather large even after 1-loop subtraction, but these are
not used for the analysis. As for the renormalization scale, the lowest effective coupling
entering the analysis is 0.235 < 0.25, so we give ◦ . As for perturbative behaviour, for the
range of couplings in the above interval α3

eff changes by (0.308/0.235)3 ≈ 2.2, marginally
reaching (3/2)2 = 2.25. The errors ∆αeff after continuum and chiral extrapolations are 4–6%
(private communication by the authors) and the induced uncertainty in Λ is comfortably
above 2α3

eff, which gives a ⋆ according to FLAG criteria.
Although the current FLAG criteria are formally passed by this result, the quoted error

of 5% for Λ seems very optimistic. We have performed a simple test, converting to the MS
scheme by inverting Eq. (357) perturbatively (instead of solving the fixed-order equation
numerically). The differences between the couplings are of order α5

s and thus indicative of
the sensitivity to perturbative truncation errors. The resulting Λ-parameter estimates are
now in the range 409–468 MeV, i.e., ca. 15–30% larger than before. While the difference
between both estimates decreases proportionally to the expected α3

eff, an extraction of the Λ-
parameter in this energy range is a priori affected by systematic uncertainties corresponding
to such differences. The FLAG criterion might fail to capture this, e.g., if the assumption
of an O(1) coefficient for the asymptotic α3

eff behaviour is not correct. Some indication for a
problematic behaviour is indeed seen when perturbatively inverting Eq. (357) to order α3

s. The
resulting MS couplings are then closer to the values used in Cali 20, although the difference
is formally O(α4

s) rather than O(α5
s).
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Scale variations. Using scale variations to determine the systematic error due to the trun-
cation of the perturbative series only makes sense when the extrapolation of the observable
to the continuum limit is under control. Therefore, we apply our common procedure only to
the results in Cali 20 [48]. Using Q ≈ 1.3 GeV as the typical scale set by the inverse of the
distance, yields

δ∗(4) = 1.0% , δ(2) = 11.6% δ∗(2) = 0.6% . (359)

The discrepancy between the variation around Q, δ(2) = 11.6%, and the variation around
the scale of fastest apparent convergence, δ∗(2) = 0.6%, is due to the large value of the factor
s∗ref = 2.72. As a consequence the scale of fastest apparent convergence is artificially large
compared to the actual scale where the lattice observables is computed. The large value of
δ(2), obtained for sref = 1, shows that the scale of the lattice observable is too low to keep the
systematic errors under control.

9.7 αs from observables at the lattice spacing scale

9.7.1 General considerations

The general method is to evaluate a short-distance quantity Q at the scale of the lattice
spacing ∼ 1/a and then determine its relationship to αMS via a perturbative expansion.

This is epitomized by the strategy of the HPQCD collaboration [78, 165], discussed here
for illustration, which computes and then fits to a variety of short-distance quantities

Y =

nmax∑
n=1

cnα
n
V′(q∗) . (360)

The quantity Y is taken as the logarithm of small Wilson loops (including some nonplanar
ones), Creutz ratios, ‘tadpole-improved’ Wilson loops and the tadpole-improved or ‘boosted’
bare coupling (O(20) quantities in total). The perturbative coefficients cn (each depending
on the choice of Y ) are known to n = 3 with additional coefficients up to nmax being fitted
numerically. The running coupling αV′ is related to αV from the static-quark potential (see
Sec. 9.5).8

The coupling constant is fixed at a scale q∗ = d/a. The latter is chosen as the mean
value of ln q with the one-gluon loop as measure [79, 166]. (Thus a different result for d is
found for every short-distance quantity.) A rough estimate yields d ≈ π, and in general the
renormalization scale is always found to lie in this region.

For example, for the Wilson loop Wmn ≡ ⟨W (ma, na)⟩ we have

ln

(
Wmn

u
2(m+n)
0

)
= c1αV′(q∗) + c2α

2
V′(q∗) + c3α

3
V′(q∗) + · · · , (361)

for the tadpole-improved version, where c1, c2 , . . . are the appropriate perturbative coefficients

and u0 = W
1/4
11 . Substituting the nonperturbative simulation value in the left hand side, we

can determine αV′(q∗), at the scale q∗. Note that one finds empirically that perturbation
theory for these tadpole-improved quantities have smaller cn coefficients and so the series has
a faster apparent convergence compared to the case without tadpole improvement.

8αV′ is defined by ΛV′ = ΛV and bV
′

i = bVi for i = 0, 1, 2 but bV
′

i = 0 for i ≥ 3.
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Using the β-function in the V′ scheme, results can be run to a reference value, chosen
as α0 ≡ αV′(q0), q0 = 7.5GeV. This is then converted perturbatively to the continuum MS
scheme

αMS(q0) = α0 + d1α
2
0 + d2α

3
0 + · · · , (362)

where d1, d2 are known 1-and 2-loop coefficients.
Other collaborations have focused more on the bare ‘boosted’ coupling constant and di-

rectly determined its relationship to αMS. Specifically, the boosted coupling is defined by

αP(1/a) =
1

4π

g20
u40
, (363)

again determined at a scale ∼ 1/a. As discussed previously, since the plaquette expectation
value in the boosted coupling contains the tadpole-diagram contributions to all orders, which
are dominant contributions in perturbation theory, there is an expectation that the pertur-
bation theory using the boosted coupling has smaller perturbative coefficients [79], and hence
smaller perturbative errors.

9.7.2 Continuum limit

Lattice results always come along with discretization errors, which one needs to remove by a
continuum extrapolation. As mentioned previously, in this respect the present method differs
in principle from those in which αs is determined from physical observables. In the general
case, the numerical results of the lattice simulations at a value of µ fixed in physical units can
be extrapolated to the continuum limit, and the result can be analyzed as to whether it shows
perturbative running as a function of µ in the continuum. For observables at the cutoff-scale
(q∗ = d/a), discretization effects cannot easily be separated out from perturbation theory, as
the scale for the coupling comes from the lattice spacing. Therefore the restriction aµ ≪ 1
(the ‘continuum-extrapolation’ criterion) is not applicable here. Discretization errors of order
a2 are, however, present. Since a ∼ exp(−1/(2b0g

2
0)) ∼ exp(−1/(8πb0α(q

∗)), these errors now
appear as power corrections to the perturbative running, and have to be taken into account
in the study of the perturbative behaviour, which is to be verified by changing a. One thus
usually fits with power corrections in this method.

In order to keep a symmetry with the ‘continuum-extrapolation’ criterion for physical
observables and to remember that discretization errors are, of course, relevant, we replace it
here by one for the lattice spacings used:

• Lattice spacings

⋆ 3 or more lattice spacings, at least 2 points below a = 0.1 fm

◦ 2 lattice spacings, at least 1 point below a = 0.1 fm

■ otherwise

9.7.3 Discussion of computations

Note that due to µ ∼ 1/a being relatively large the results easily have a ⋆ or ◦ in the rating
on renormalization scale.
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Collaboration Ref. Nf pu
bl
ic
at
io
n
st
at
us

re
no
rm

al
iz
at
io
n
sc
al
e

p
er
tu
rb
at
iv
e
b
eh
av
io
ur

la
tt
ic
e
sp
ac
in
gs

scale ΛMS[MeV] r0ΛMS

HPQCD 10a§ [167] 2+1 A ◦ ⋆ ⋆ r1 = 0.3133(23) fm 340(9) 0.812(22)

HPQCD 08Aa [78] 2+1 A ◦ ⋆ ⋆ r1 = 0.321(5) fm†† 338(12)⋆ 0.809(29)

Maltman 08a [168] 2+1 A ◦ ◦ ⋆ r1 = 0.318 fm 352(17)† 0.841(40)

HPQCD 05Aa [165] 2+1 A ◦ ◦ ◦ r1
†† 319(17)⋆⋆ 0.763(42)

QCDSF/UKQCD 05[169] 2 A ⋆ ■ ⋆ r0 = 0.467(33) fm 261(17)(26) 0.617(40)(21)b

SESAM 99c [170] 2 A ◦ ■ ■ cc̄(1S-1P)

Wingate 95d [171] 2 A ⋆ ■ ■ cc̄(1S-1P)
Davies 94e [172] 2 A ⋆ ■ ■ Υ

Aoki 94f [173] 2 A ⋆ ■ ■ cc̄(1S-1P)

Kitazawa 16 [174] 0 A ⋆ ⋆ ⋆ w0 260(5)j 0.621(11)j

FlowQCD 15 [175] 0 P ⋆ ⋆ ⋆ w0.4
i 258(6)i 0.618(11)i

QCDSF/UKQCD 05[169] 0 A ⋆ ◦ ⋆ r0 = 0.467(33) fm 259(1)(20) 0.614(2)(5)b

SESAM 99c [170] 0 A ⋆ ■ ■ cc̄(1S-1P)

Wingate 95d [171] 0 A ⋆ ■ ■ cc̄(1S-1P)
Davies 94e [172] 0 A ⋆ ■ ■ Υ

El-Khadra 92g [176] 0 A ⋆ ■ ◦ cc̄(1S-1P) 234(10) 0.560(24)h

a The numbers for Λ have been converted from the values for α
(5)
s (MZ).

§ α
(3)

MS
(5 GeV) = 0.2034(21), α

(5)

MS
(MZ) = 0.1184(6), only update of intermediate scale and c-, b-quark

masses, supersedes HPQCD 08A.
† α

(5)

MS
(MZ) = 0.1192(11).

⋆ α
(3)
V (7.5GeV) = 0.2120(28), α

(5)

MS
(MZ) = 0.1183(8), supersedes HPQCD 05.

†† Scale is originally determined from Υ mass splitting. r1 is used as an intermediate scale. In conversion
to r0ΛMS, r0 is taken to be 0.472 fm.

⋆⋆ α
(3)
V (7.5GeV) = 0.2082(40), α

(5)

MS
(MZ) = 0.1170(12).

b This supersedes Refs. [177–179]. α
(5)

MS
(MZ) = 0.112(1)(2). The Nf = 2 results were based on values

for r0/a which have later been found to be too small [59]. The effect will be of the order of 10–15%,
presumably an increase in Λr0.

c α
(5)

MS
(MZ) = 0.1118(17).

d α
(3)
V (6.48GeV) = 0.194(7) extrapolated from Nf = 0, 2. α

(5)

MS
(MZ) = 0.107(5).

e α
(3)
P (8.2GeV) = 0.1959(34) extrapolated from Nf = 0, 2. α

(5)

MS
(MZ) = 0.115(2).

f Estimated α
(5)

MS
(MZ) = 0.108(5)(4).

g This early computation violates our requirement that scheme conversions are done at the 2-loop level.
Λ

(4)

MS
= 160(+47

−37)MeV, α
(4)

MS
(5GeV) = 0.174(12). We converted this number to give α

(5)

MS
(MZ) = 0.106(4).

h We used r0 = 0.472 fm to convert to r0ΛMS.
i Reference scale w0.4 where wx is defined by t∂t[t

2⟨E(t)⟩]
∣∣
t=w2

x
= x in terms of the action density E(t) at

positive flow time t [175]. Our conversion to r0 scale using [175] r0/w0.4 = 2.587(45) and r0 = 0.472 fm.
j Our conversion from w0ΛMS = 0.2154(12) to r0 scale using r0/w0 = (r0/w0.4) · (w0.4/w0) = 2.885(50)

with the factors cited by the collaboration [175] and with r0 = 0.472 fm.

Table 61: Wilson loop results. Some early results for Nf = 0, 2 did not determine ΛMS.
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The work of El-Khadra 92 [176] employs a 1-loop formula to relate α
(0)

MS
(π/a) to the

boosted coupling for three lattice spacings a−1 = 1.15, 1.78, 2.43GeV. (The lattice spacing

is determined from the charmonium 1S-1P splitting.) They obtain Λ
(0)

MS
= 234MeV, cor-

responding to αeff = α
(0)

MS
(π/a) ≈ 0.15–0.2. The work of Aoki 94 [173] calculates α

(2)
V and

α
(2)

MS
for a single lattice spacing a−1 ∼ 2GeV, again determined from charmonium 1S-1P

splitting in two-flavour QCD. Using 1-loop perturbation theory with boosted coupling, they

obtain α
(2)
V = 0.169 and α

(2)

MS
= 0.142. Davies 94 [172] gives a determination of αV from the

expansion

− lnW11 ≡
4π

3
α
(Nf )
V (3.41/a)× [1− (1.185 + 0.070Nf )α

(Nf )
V ] , (364)

neglecting higher-order terms. They compute the Υ spectrum in Nf = 0, 2 QCD for single
lattice spacings at a−1 = 2.57, 2.47GeV and obtain αV(3.41/a) ≃ 0.15, 0.18, respectively.

Extrapolating the inverse coupling linearly in Nf , a value of α
(3)
V (8.3GeV) = 0.196(3) is

obtained. SESAM 99 [170] follows a similar strategy, again for a single lattice spacing. They

linearly extrapolated results for 1/α
(0)
V , 1/α

(2)
V at a fixed scale of 9GeV to give α

(3)
V , which

is then perturbatively converted to α
(3)

MS
. This finally gave α

(5)

MS
(MZ) = 0.1118(17). Wingate

95 [171] also follows this method. With the scale determined from the charmonium 1S-1P
splitting for single lattice spacings in Nf = 0, 2 giving a−1 ≃ 1.80GeV for Nf = 0 and

a−1 ≃ 1.66GeV for Nf = 2, they obtain α
(0)
V (3.41/a) ≃ 0.15 and α

(2)
V ≃ 0.18, respectively.

Extrapolating the inverse coupling linearly in Nf , they obtain α
(3)
V (6.48GeV) = 0.194(17).

The QCDSF/UKQCD collaboration, QCDSF/UKQCD 05 [169], [177–179], use the 2-loop
relation (re-written here in terms of α)

1

αMS(µ)
=

1

αP(1/a)
+ 4π(2b0 ln aµ− tP1 ) + (4π)2(2b1 ln aµ− tP2 )αP(1/a) , (365)

where tP1 and tP2 are known. (A 2-loop relation corresponds to a 3-loop lattice β-function.)
This was used to directly compute αMS, and the scale was chosen so that the O(α0

P) term
vanishes, i.e.,

µ∗ =
1

a
exp [tP1 /(2b0)] ≈

{
2.63/a Nf = 0
1.4/a Nf = 2

. (366)

The method is to first compute αP(1/a) and from this, using Eq. (365) to find αMS(µ
∗). The

RG equation, Eq. (288), then determines µ∗/ΛMS and hence using Eq. (366) leads to the
result for r0ΛMS. This avoids giving the scale in MeV until the end. In the Nf = 0 case
seven lattice spacings were used [64], giving a range µ∗/ΛMS ≈ 24–72 (or a−1 ≈ 2–7 GeV)
and αeff = αMS(µ

∗) ≈ 0.15–0.10. Neglecting higher-order perturbative terms (see discussion
after Eq. (367) below) in Eq. (365) this is sufficient to allow a continuum extrapolation of
r0ΛMS. A similar computation for Nf = 2 by QCDSF/UKQCD 05 [169] gave µ∗/ΛMS ≈
12–17 (or roughly a−1 ≈ 2–3 GeV) and αeff = αMS(µ

∗) ≈ 0.20–0.18. The Nf = 2 results of
QCDSF/UKQCD 05 [169] are affected by an uncertainty which was not known at the time
of publication: It has been realized that the values of r0/a of Ref. [169] were significantly too
low [59]. As this effect is expected to depend on a, it influences the perturbative behaviour
leading us to assign a ■ for that criterion.

Results for the Nf = 0 Λ-parameter by FlowQCD 15 [175], later updated and published in
Kitazawa 16 [174], are obtained following the same strategy, cf. Eqs. (365), (366), except that
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the scale r0 is replaced by the gradient flow scale w0, leading to a determination of w0ΛMS.
The continuum limit is estimated by extrapolating the data at six lattice spacings linearly in
a2. The data range used is µ∗/ΛMS ≈ 50–120 (or a−1 ≈ 5–11 GeV) and αMS(µ

∗) ≈ 0.12–
0.095. Since a very small value of αMS is reached, there is a ⋆ in the perturbative behaviour.
Note that our conversion to the common r0 scale unfortunately leads to a significant increase
of the error of the Λ parameter compared to using w0 directly [180]. Again we note that
the results of QCDSF/UKQCD 05 [169] (Nf = 0) and Kitazawa 16 [174] may be affected by
frozen topology as they have lattice spacings significantly below a = 0.05 fm. Kitazawa 16
[174] investigate this by evaluating w0/a in a fixed topology and estimate any effect at about
∼ 1%.

The work of HPQCD 05A [165] (which supersedes the original work [181]) uses three
lattice spacings a−1 ≈ 1.2, 1.6, 2.3GeV for 2+ 1 flavour QCD. Typically the renormalization
scale q ≈ π/a ≈ 3.50–7.10 GeV, corresponding to αV′ ≈ 0.22–0.28.

In the later update HPQCD 08A [78] twelve data sets (with six lattice spacings) are now
used reaching up to a−1 ≈ 4.4GeV, corresponding to αV′ ≈ 0.18. The values used for the scale
r1 were further updated in HPQCD 10 [167]. Maltman 08 [168] uses most of the same lattice
ensembles as HPQCD 08A [78], but not the one at the smallest lattice spacing, a ≈ 0.045 fm.
Maltman 08 [168] also considers a much smaller set of quantities (three versus 22) that are
less sensitive to condensates. They also use different strategies for evaluating the condensates
and for the perturbative expansion, and a slightly different value for the scale r1. The central
values of the final results from Maltman 08 [168] and HPQCD 08A [78] differ by 0.0009 (which
would be decreased to 0.0007 taking into account a reduction of 0.0002 in the value of the r1
scale used by Maltman 08 [168]).

As mentioned before, the perturbative coefficients are computed through 3-loop order [182],
while the higher-order perturbative coefficients cn with nmax ≥ n > 3 (with nmax = 10) are
numerically fitted using the lattice-simulation data for the lattice spacings with the help of
Bayesian methods. It turns out that corrections in Eq. (361) are of order |ci/c1|αi = 5–15%
and 3–10% for i = 2, 3, respectively. The inclusion of a fourth-order term is necessary to
obtain a good fit to the data, and leads to a shift of the result by 1–2 sigma. For all but one of
the 22 quantities, central values of |c4/c1| ≈ 2–4 were found, with errors from the fits of ≈ 2.
It should be pointed out that the description of lattice results for the short-distance quan-
tities does not require Bayesian priors, once the term proportional to c4 is included [168].
We also stress that different short-distance quantities have quite different nonperturbative
contributions [183]. Hence the fact that different observables lead to consistent αs values is a
nontrivial check of the approach.

An important source of uncertainty is the truncation of perturbation theory. In HPQCD
08A [78], HPQCD 10 [167] it is estimated to be about 0.4% of αMS(MZ). In FLAG 13 we
included a rather detailed discussion of the issue with the result that we prefer for the time
being a more conservative error based on the above estimate |c4/c1| = 2. From Eq. (360) this
gives an estimate of the uncertainty in αeff of

∆αeff(µ1) =

∣∣∣∣c4c1
∣∣∣∣α4

eff(µ1) , (367)

at the scale µ1 where αeff is computed from the Wilson loops. This can be used with a
variation in Λ at lowest order of perturbation theory and also applied to αs evolved to a
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different scale µ2,
9

∆Λ

Λ
=

1

8πb0αs

∆αs

αs
,

∆αs(µ2)

∆αs(µ1)
=
α2
s(µ2)

α2
s(µ1)

. (368)

With µ2 =MZ and αs(µ1) = 0.2 (a typical value extracted from Wilson loops in HPQCD 10
[167], HPQCD 08A [78] at µ = 5GeV) we have

∆αMS(mZ) = 0.0012 , (369)

which we shall later use as the typical perturbative uncertainty of the method with 2 + 1
fermions.

Table 61 summarizes the results. Within the errors of 3–5% Nf = 3 determinations of
r0Λ nicely agree.

Scale variations. As discussed above, the short-distance observables are fitted to a per-
turbative expansion where the higher-order coefficients are actual parameters in the fit. Here
instead we follow the exact same procedure introduced for all the observables, and we describe
the observables using only the known perturbative coefficients. For illustration, we report the
result of the scale variations for two observables, namely the simple 1× 1 plaquette and the
2× 1 Wilson loop. The perturbative coefficients are reported in Tab. 56 and the typical scale
is µ ≈ 2.4/a ≈ 4.4 GeV. With these values we obtain the following results.

− logW11

δ∗(4) = 2.8% , δ(2) = 3.3% δ∗(2) = 2.5% . (370)

− logW112/u
6
0

δ∗(4) = 3.5% , δ(2) = 3.2% δ∗(2) = 3.1% . (371)

This analysis suggests a systematic error around 3% for these kind of analyses on the available
ensembles.

9.8 αs from heavy-quark current two-point functions

9.8.1 General considerations

The method has been introduced in HPQCD 08, Ref. [184], and updated in HPQCD 10,
Ref. [167], see also Ref. [185]. In addition there is a 2+1+1-flavour result, HPQCD 14A [186].

The basic observable is constructed from a current,

J(x) = iamcψc(x)γ5ψc′(x) , (372)

of two mass-degenerate heavy-valence quarks, c, c′, usually taken to be at or around the
charm-quark mass. The pre-factor mc denotes the bare mass of the quark. When the lattice
discretization respects chiral symmetry, J(x) is a renormalization group invariant local field,

9From Eq. (295) we see that at low order in PT the coupling αs is continuous and differentiable across the
mass thresholds (at the same scale). Therefore to leading order αs and ∆αs are independent of Nf .
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i.e., it requires no renormalization. Staggered fermions and twisted-mass fermions have such
a residual chiral symmetry. The (Euclidean) time-slice correlation function

G(x0) = a6
∑
x⃗

⟨J†(x)J(0)⟩ , (373)

(J†(x) = iamcψc′(x)γ5ψc(x)) has a ∼ x−3
0 singularity at short distances and moments

Gn = a

T/2−a∑
x0=−(T/2−a)

xn0 G(x0) (374)

are nonvanishing for even n and furthermore finite for n ≥ 4 in the a → 0 limit. Here T is
the time extent of the lattice. The moments are dominated by contributions at x0 of order
1/mc. For large mass mc these are short distances and the moments become increasingly
perturbative for decreasing n. Denoting the lowest-order perturbation theory moments by

G
(0)
n , one defines the normalized moments

Rn =


G4/G

(0)
4 for n = 4 ,

amηc
2amc

(
Gn

G
(0)
n

)1/(n−4)
for n ≥ 6 ,

(375)

of even order n. Note that Eq. (372) contains the variable (bare) heavy-quark mass mc. The

normalization G
(0)
n is introduced to help in reducing lattice artifacts. In addition, one can

also define moments with different normalizations,

R̃n = 2Rn/mηc for n ≥ 6 . (376)

While R̃n also remains renormalization-group invariant, it now also has a scale which might
introduce an additional ambiguity [187].

The normalized moments can then be parameterized in terms of functions

Rn ≡

{
r4(αs(µ)) for n = 4 ,

mηc
2m̄c(µm)rn(αs(µ)) for n ≥ 6 ,

(377)

with m̄c(µm) being the renormalized heavy-quark mass. The scale µm at which the heavy-
quark mass is defined could be different from the scale µ at which αs is defined [188]. The
HPQCD collaboration, however, used the choice µ = µm = 3mc(µ). This ensures that
the renormalization scale is never too small. The reduced moments rn have a perturbative
expansion

rn = 1 + rn,1αs + rn,2α
2
s + rn,3α

3
s + . . . , (378)

where the written terms rn,i(µ/m̄c(µ)), i ≤ 3 are known for low n from Refs. [80, 189–192].
In practice, the expansion is performed in the MS scheme. Matching nonperturbative lattice
results for the moments to the perturbative expansion, one determines an approximation
to αMS(µ) as well as m̄c(µ). With the lattice spacing (scale) determined from some extra
physical input, this calibrates µ. As usual suitable pseudoscalar masses determine the bare-
quark masses, here in particular the charm-quark mass, and then through Eq. (377) the
renormalized charm-quark mass.
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A difficulty with this approach is that large masses are needed to enter the perturbative
domain. Lattice artifacts can then be sizeable and have a complicated form. The ratios in
Eq. (375) use the tree-level lattice results in the usual way for normalization. This results in
unity as the leading term in Eq. (378), suppressing some of the kinematical lattice artifacts.
We note that in contrast to, e.g., the definition of αqq, here the cutoff effects are of order
akαs, while there the tree-level term defines αs and therefore the cutoff effects after tree-
level improvement are of order akα2

s. To obtain the continuum results for the moments it is
important to perform fits with high powers of a. This implies many fit parameters. To deal
with this problem the HPQCD collaboration used Bayesian fits of their lattice results. More
recent analyses of the moments, however, did not rely on Bayesian fits [31, 187, 193, 194].

Finite-size effects (FSE) due to the omission of |x0| > T/2 in Eq. (374) grow with n
as (mηcT/2)

n exp (−mηcT/2). In practice, however, since the (lower) moments are short-
distance dominated, the FSE are expected to be small at the present level of precision. Pos-
sible exception could be the ratio R8/R10, where the finite-volume effects could be significant
as discussed below.

Moments of correlation functions of the quark’s electromagnetic current can also be ob-
tained from experimental data for e+e− annihilation [195, 196]. This enables a nonlattice
determination of αs using a similar analysis method. In particular, the same continuum
perturbation-theory computation enters both the lattice and the phenomenological determi-
nations.

9.8.2 Discussion of computations

The determination of the strong coupling constant from the moments of quarkonium correla-
tors by HPQCD collaboration have been discussed in detail in the FLAG 16 and 19 reports.
Therefore, we only give the summary of these determinations in Table 62. There were no
new determinations of the strong coupling constant in 2+1 flavour QCD by other groups
since the FLAG 21 report. The only new development was that Petreczky 20 [31] is now
published and therefore this determination enters the FLAG average. The determinations of
αs by Maezawa 16, JLQCD16, Petreczky 19 and Boito 20 have been discussed in detail in the
FLAG 21 report, so we do not discuss them here again and only give the summary of these
determinations in Table 62. We will only discuss the results of Petreczky 20 [31] here.

Petreczky 20 is based on the same lattice data as Petreczky 19 [194]. Here the pseudo-
scalar correlation functions have been computed using HISQ ensembles from HotQCD Collab-
oration [54] for physical strange-quark mass and light-quark masses corresponding to the pion
mass of 160 MeV in the continuum limit, and lattice spacings a−1 = 1.81, 2.07, 2.39, 2.67, 3.01, 3.28, 4.00
and 4.89 GeV. Additional calculations have been performed for light-quark mass correspond-
ing to the pion mass of 300 MeV and lattice spacings a−1 = 2.39, 4.89, 5.58, 6.62 and
7.85 GeV using the gauge configurations from the study of QCD equation of state at high
temperatures [150]. No significant light-quark-mass dependence of heavy pseudo-scalar cor-
relators have been observed [194]. Therefore, the results for the two light-quark masses have
been combined into a single analysis. Calculations have been performed at four values of the
heavy-quark mass equal to the physical charm-quark mass, one and half times the charm-
quark mass, two times the charm-quark mass and three times the charm-quark mass. In
this study random-colour wall sources which greatly reduced the statistical errors were used.
In fact, the statistical errors on the moments were completely negligible compared to other
sources of errors. The strong coupling constant was extracted from R4 [31]. To obtain the
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scale ΛMS[MeV] r0ΛMS

HPQCD 14A [186] 2+1+1 A ◦ ⋆ ◦ w0 = 0.1715(9) fma 294(11)bc 0.703(26)

Petreczky 20 [31] 2+1 A ◦ ◦ ⋆ r1 = 0.3106(18) fm 332(17)h 0.792(41)g

Boito 20 [197] 2+1 A ■ ■ ◦ mc(mc) = 1.28(2) GeV 328(30)h 0.785(72)
Petrezcky 19, mh=mc [194] 2+1 A ■ ■ ⋆ r1 = 0.3106(18) fmg 314(10) 0.751(24)g

Petrezcky 19, mh
mc

=1.5 [194] 2+1 A ■ ■ ◦ r1 = 0.3106(18) fmg 310(10) 0.742(24)g

Maezawa 16 [193] 2+1 A ■ ■ ◦ r1 = 0.3106(18) fmd 309(10)e 0.739(24)e

JLQCD 16 [187] 2+1 A ■ ◦ ◦ √
t0 = 0.1465(25) fm 331(38)f 0.792(89)f

HPQCD 10 [167] 2+1 A ◦ ⋆ ◦ r1 = 0.3133(23) fm† 338(10)⋆ 0.809(25)

HPQCD 08B [184] 2+1 A ■ ■ ■ r1 = 0.321(5) fm† 325(18)+ 0.777(42)

a Scale determined in [198] using fπ.
b α

(4)

MS
(5GeV) = 0.2128(25), α

(5)

MS
(MZ) = 0.11822(74).

c We evaluated Λ
(4)

MS
from α

(4)

MS
. We also used r0 = 0.472 fm.

d Scale is determined from fπ .
e α

(3)

MS
(mc = 1.267GeV) = 0.3697(85), α

(5)

MS
(MZ) = 0.11622(84). Our conversion with r0 = 0.472 fm.

f We evaluated Λ
(3)

MS
from the given α

(4)

MS
(3GeV) = 0.2528(127). α

(5)

MS
(MZ) = 0.1177(26). We also used

r0 = 0.472 fm to convert.
g We used r0 = 0.472 fm to convert.
h We back-engineered from α

(5)

MS
(MZ) = 0.1177(20). We used r0 = 0.472 fm to convert.

⋆ α
(3)

MS
(5GeV) = 0.2034(21), α

(5)

MS
(MZ) = 0.1183(7).

† Scale is determined from Υ mass splitting.
+ We evaluated Λ

(3)

MS
from the given α

(4)

MS
(3GeV) = 0.251(6). α

(5)

MS
(MZ) = 0.1174(12).

Table 62: Heavy-quark current two-point function results. Note that all analysis using 2 + 1
flavour simulations perturbatively add a dynamical charm quark. Partially they then quote
results in four-flavour QCD, which we converted back to Nf = 3, corresponding to the non-
perturbative sea quark content.

continuum limit the lattice-spacing dependence of the results of R4 at different quark masses
was fitted simultaneously in a similar manner as in the HPQCD 10 and HPQCD 14 analyses,
but without using Bayesian priors. In extracting αs several choices of the renormalization
scale µ in the range 2/3mh–3mh have been considered. The perturbative truncation error was
estimated by varying the coefficient of the unknown 4-loop term in Eq. (378) between −1.6r3
and +1.6r3. However, the uncertainty of the results due to the scale variation was larger than

the estimated perturbative truncation error. The final error of the result Λ
Nf=3

MS
= 331(17)

MeV comes mostly from the scale variation [31]. Since there are three lattice spacing available
with aµ < 0.5 we give ⋆ for continuum extrapolation. Because αeff = 0.22 − 0.38 we give

◦ for the renormalization scale. Finally, since (∆Λ/Λ)∆α > α2
eff for the smallest αeff value

we give ◦ for the perturbative behaviour. In addition to R4 Petreczky 20 also considered
using R6/R8 and R8/R10 for the αs determination. It was pointed out that the lattice spac-
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ing dependence of R6/R8 is quite subtle and therefore reliable continuum extrapolations for
this ratio are not possible for mh ≥ 2mc [31]. For mh = mc and 1.5mc the ratio R6/R8

leads to αs values that are consistent with the ones from R4. Furthermore, it was argued
that finite-volume effects in the case of R8/R10 are large for mh = mc and therefore the
corresponding data are not suitable for extracting αs. This observation may explain why the
central values of αs extracted from R8/R10 in some previous studies were systematically lower
[184, 193, 194]. On the other hand for mh ≥ 1.5mc the finite-volume effects are sufficiently
small in the continuum extrapolated results if some small-volume lattice data are excluded
from the analysis [31]. The αs obtained from R8/R10 with mh ≥ 1.5mc were consistent with
the ones obtained from R4.

Aside from the final results for αs(mZ) obtained by matching with perturbation theory,
it is interesting to make a comparison of the short distance quantities in the continuum
limit Rn which are available from HPQCD 08 [184], JLQCD 16 [187], Maezawa 16 [193],
Petreczky 19 [194] and Petreczky 20 [31] (all using 2+ 1 flavours). This comparison is shown
in Tab. 63. The results are in quite good agreement with each other. For future studies it is

HPQCD 08 HPQCD 10 Maezawa 16 JLQCD 16 Petreczky 19 Petreczky 20

R4 1.272(5) 1.282(4) 1.265(7) - 1.279(4) 1.278(2)
R6 1.528(11) 1.527(4) 1.520(4) 1.509(7) 1.521(3) 1.522(2)
R8 1.370(10) 1.373(3) 1.367(8) 1.359(4) 1.369(3) 1.368(3)
R10 1.304(9) 1.304(2) 1.302(8) 1.297(4) 1.311(7) 1.301(3)

R6/R8 1.113(2) - 1.114(2) 1.111(2) 1.1092(6) 1.10895(32)
R8/R10 1.049(2) - 1.0495(7) 1.0481(9) 1.0485(8) -

Table 63: Moments and the ratios of the moments from Nf = 3 simulations at the charm-
quark mass.

of course interesting to check agreement of these numbers before turning to the more involved
determination of αs.

While there have been no new determinations of αs from the moments of the heavy-quark
current two-point functions in 2+1+1 flavour or 2+1 flavour QCD since the FLAG 21 report,
this method has been scrutinized in quneched QCD (Nf = 0) in three conference proceedings
[36, 199, 200]. In these works the Wilson gauge action was used for several values of the lattices
spacings, down to lattice spacing of a = 0.01 fm, which is 2.5 times smaller than the smallest
lattice spacing used in 2+1 flavour QCD. The box size was sufficiently large for the heavy-
quark current two-point functions, namely L = 2 fm was used. In the temporal direction
open boundary conditions have been used, and the extent in the time direction was 6 fm. For
heavy-quark twisted-mass fermion formulation was used at the maximal twist. Five different
heavy-quark masses have been used in these studies, namely 0.77Mc, 1.16Mc, 1.55Mc, 2.32Mc

and 3.48Mc, with Mc being the physical charm-quark mass [36, 199, 200]. The continuum

extrapolation of R4 has been performed and from it the value of Λ
Nf=0

MS
was obtained for

different heavy-quark masses and different choices of µ. It turned out, however, that the
results obtained for different heavy-quark masses and values of µ are not consistent with each
other and often are not compatible with the value determined from step scaling [110]. It
was argued that this is due to the log-enhanced discretization errors in R4, i.e., discretization
errors that are proportional to a2 log(amc) [200], and that reliable continuum extrapolation
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of R4 is not possible for this lattice setup. A practical way to circument this problem was also
proposed in Ref. [200] and relies on considering a special combination of R4 evaluated at two
heavy-quark masses. The ratios R6/R8 and R8/R10 do not have log-enhanced discretization

effects [36, 200] and therefore, can be used to obtain Λ
Nf=0

MS
. Such an analysis was performed

in Ref. [36]. Here to deal with perturbative error it was assumed that Λ
Nf=0

MS

√
8t0 obtained

at different renormalization scales µ is linear in α2
s(µ) as expected from 3-loop perturbative

calculations. Performing linear extrapolations in α2
s(µ) the final values of Λ

Nf=0

MS

√
8t0 have

been obtained. The corresponding results for the Λ-parameter agree with the result of the
step-scaling analysis but have much larger errors, and thus are not competitive [36].

Scale variations. Moments of heavy-quark correlators are computed at scales that are set
by the mass of the charm quark. We compute scale variations for the moments r4, r6 and r8
at different values of the matching scale.

HQ r4, Q = mc

δ(2) = 2.7% δ∗(2) = 2.8% . (379)

HQ r4, Q = 2mc

δ∗(4) = 1.2% , δ(2) = 1.5% δ∗(2) = 1.6% . (380)

HQ r6, Q = 2mc

δ(2) = 2.3% δ∗(2) = 1.2% . (381)

HQ r8, Q = 2mc

δ(2) = 2.8% δ∗(2) = 4.8% . (382)

We note here that the errors from the scale variations are in the same ballpark as previous
estimates published in FLAG reviews. The moment r4 computed at the scale Q = 2mc

happens to have a systematic error in the range 1− 2%.

9.9 Gradient flow schemes

9.9.1 General considerations

The gradient flow [38, 96] (cf. the paragraph around Eq. (320) for the basic equations) allows
for the definition of many new observables, both in pure gauge theory and QCD, which are
gauge invariant and automatically renormalized after the standard QCD renormalizations of
parameters and composite fields have been carried out. This has been established perturba-
tively to all orders in Ref. [201] and confirmed up to 2-loop level in practical calculations [83].
It is generally assumed to be valid beyond perturbation theory and many simulation results
corroborate this assumption.

The gradient flow comes with the flow-time parameter, t, which has dimensions of length
squared and thus introduces a new energy scale which is, by analogy with the diffusion
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equation, naturally identified as µ = 1/
√
8t (in four dimensions). The most widely used

observable is the action density at finite flow time,

E(t, x) = −1

2
tr{Gµν(t, x)Gµν(x)} . (383)

Its expectation value has a perturbative expansion starting at O(α), which gives rise to the
definition of the coupling in the GF scheme,

αGF(µ) ≡
ḡ2GF(µ)

4π
=

4πt2

3
⟨E(t, x)⟩ (384)

and is known to 3-loop order,

αGF(µ = 1/
√
8t) = αMS(µ) + k1αMS(µ)

2 + k2αMS(µ)
3 + . . . (385)

with k1 and k2 computed in Refs. [38] and [83], respectively (cf. Tab. 56). Note that the GF
coupling directly relates to the scale t0; its definition is equivalent to ḡ2GF(1/

√
8t0) = 15.8.

With the flow time setting the renormalization scale, the β-function is readily obtained during
the numerical integration of the flow equation, by also tracking the flow-time derivative of
⟨E(t, x)⟩,

βGF(ḡGF) = −2t
d

dt
ḡGF(1/

√
8t) , (386)

and the 3-loop β-function coefficient b2 is known. In the pure gauge theory is is given by

bGF
2 = −1.90395(4)/(4π)3, (Nf = 0). (387)

This is almost three times larger in magnitude than in the MS scheme and of opposite sign.
One naturally worries about higher-order corrections being large, too. As a result, making
contact with perturbation theory requires very small couplings. To quantify the problem, we
have done the following exercises (all for Nf = 0): First one may evaluate the difference in√
8tΛGF obtained by integrating the perturbative β-function at 2- vs. 3-loop order from zero

coupling to a reference value ḡ2GF(1/
√
8t) = 1.2, which corresponds to the smallest coupling

reached in the works discussed below. We find that this difference is about 11 percent, again
about three times larger than with the MS scheme. In order to vary the scale we convert to
the MS scheme,

αGF(µ) = αMS(sµ) + k1(s)αMS(sµ)
2 + k2(s)αMS(sµ)

3 +O(α4
MS

), (388)

where the s-dependence of the coefficients is given as

k1(s)− k1(1) = 8πb0 ln(s), k2(s)− k2(1) = 32π2b1 ln(s) + k1(s)
2 − k1(1)

2. (389)

In order to obtain the MS coupling in terms of the reference coupling one needs to invert
Eq. (388), which we do either perturbatively or numerically for the truncated equation. We
then compute, √

8tΛMS = s× φMS

(
ḡMS(s/

√
8t)
)
, (390)

for scale factors s = 1/2, 1, 2, using the 5-loop β-function in the MS scheme. We find that the
resulting variation in the Λ-parameter depends on how the MS-coupling is obtained: With
perturbative inversion, the variation is plus 7.5 and minus 4 percent, with numerical inversion,
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one obtains plus 2.5 and plus 3.3 percent, i.e., even monotony is lost. The central values for
s = 1 differ by 5 percent. As an alternative, we consider the scale factor s∗ = 0.534 which
implies k1(s

∗) = 0. Varying by a factor two around s∗ one finds that the difference in central
values reduces to 1.3 percent, and the Λ-parameter changes by minus 6 percent and plus 4
percent for perturbative inversion, and by plus 9.7% and minus 2.7% for numerical inversion.

We conclude that at this reference coupling a determination of the Λ-parameter to better
than five percent seems impossible.

9.9.2 Discussion of computations

A determination of the β-function directly from the flow-time dependence of the GF coupling
requires a controlled infinite-volume extrapolation. This was first suggested in Ref. [202],
where the strategy was applied to a BSM model. Since then, two works have applied this
scheme to the pure gauge theory (QCD with Nf = 0), namely Hasenfratz 23 [34] and Wong
23 [35], in a proceedings contribution. We mainly discuss Hasenfratz 23 who provide more
details: the data produced for the GF coupling ranges from 15.8 down to 1.2, lattice sizes vary
between L/a = 20 and L/a = 48, depending on the β-value, and periodic boundary conditions
are imposed on the gauge field. Wong 23 do have data for larger lattices up to L/a = 64 and
even L/a = 80, 96 at selected bare couplings. The data for both ḡ2GF and βGF are extrapolated
to the infinite-volume limit at fixed lattice spacing, assuming corrections ∝ (a/L)4, with
Wong 23 also allowing for a subleading (a/L)6 term. Then the continuum limit is taken for
a2/t-values in the range 0.25–0.5, corresponding to aµ-values in the range 0.177–0.25, and a
somewhat wider range in Wong 23. The continuum extrapolation data for the β-function at
fixed GF coupling are shown in plots. For Hasenfratz 23 these extrapolations look fine and
would pass any reasonable data-driven criterion. Wong 23 only show the extrapolation at the
largest GF coupling which looks fine, too. Hence we give ⋆ for the continuum extrapolation
and also for renormalization scale, given that αeff reaches down to below 0.1. Regarding the
formal FLAG criterion for perturbative behaviour, Hasenfratz 23 give an overall error of 0.6%
for αGF. Using this error we have, at the smallest couplings reached, αnl

eff = (0.1)2 < 0.006×
2.85 = 0.017, which satisfies the criterion comfortably. This warrants a ⋆ for Hasenfratz 23.
For Wong 23 the accuracy of αGF is not given but they quote a per-mille accuracy for the
beta function at ḡ2GF = 15.8; we assign a ◦ , which assumes their coupling data is perhaps a
factor 2 but still less than a factor 3− 4 more accurate relative to the 0.6% of Hasenfratz 23.

Unfortunately, the formal FLAG criteria do not capture the anomalously bad behaviour
of the GF scheme. As discussed above, even at αeff = 0.1 the estimate of the Λ-parameter is
ambiguous at the level of about 5 percent.

Contact to perturbation theory is not really established, as the obtained β-function seems
to show a slope that is different from the perturbative expectation. Imposing perturbative
asymptotics and evaluating the integral over the beta function numerically leads to the esti-
mate

√
8t0ΛMS = 0.622(10). Wong 23 obtain an even smaller error,

√
8t0ΛMS = 0.632(7).10

Note that both values are in agreement with each other and with Dalla Brida 19 (who ob-
tained 0.623(10)) and would lend support to the high central value compared to older results
in the literature. Despite this consistency, the claimed high accuracy seems at odds with the
bad perturbative behaviour of this scheme.

Regarding the infinite-volume limit, the main problem is the lack of guidance from theory
regarding the fit ansatz. With Nf = 0 and in the hadronic regime, one may expect an

10Wong 23 write t0ΛMS, instead of
√
8t0ΛMS, which we interpret as a typo.
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exponential approach to the infinite-volume limit ∝ exp(−mGL), with mG the 0++ glueball
mass. At high energies one is necessarily in small volumes where hadrons cannot form, and
leading effects ∝ (a/L)4 are used as a plausible ansatz by both groups of authors. However,
there is an intermediate regime where the situation is quite unclear, and even at high energies,
once the volume is large enough to contain hadrons, the large-volume asymptotics should be
expected to change. The situation may be even more complicated in full QCD, where massless
pions are expected at low energies. Chiral perturbation theory may help but only as long as
pions are relevant degrees of freedom.

Note that boundary conditions should not matter in the infinite-volume limit, so that any
of the GF finite-volume couplings that have been used in step-scaling studies (cf. Sec. 9.3)
could be used to improve our understanding of it. In fact, the first discussion can be found
in Ref. [95], there with open-SF boundary conditions. In Dalla Brida 19, two different finite-
volume schemes are considered which should both converge to the infinite-volume GF scheme.

In step-scaling studies, the gradient-flow scale is fixed in units of L to a constant c =√
8t/L, with typical values around c = 0.3. This means that the β-function cannot be

obtained directly and a detour via the step-scaling function is used in practice [110] Since the
schemes are defined in a finite volume, c becomes an integral part of the scheme definition as
do the boundary conditions (SF, twisted periodic, etc.). In particular, the perturbative 2-loop
result in Eq. (385) cannot be used. For Nf = 0 and twisted periodic boundary conditions
there is a 1-loop computation [102] while for Nf = 0 and SF boundary conditions there is a
2-loop result obtained using a stochastic perturbative approach [101]. As in infinite volume,
the perturbative behaviour of the finite-volume gradient-flow schemes is quite bad [110]. This
problem was circumvented in Refs. [33, 100, 110] by matching nonperturbatively to the SF
scheme, in order to benefit from its good perturbative behaviour. The option of such a
matching is also mentioned in Hasenfratz 23 where it is left to future work.

In Tab. 64 we list these results.
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scale
√
8t0ΛMS r0ΛMS

∗

Hasenfratz 23 [34] 0 A ⋆ ⋆ ⋆
√
t0 0.622(10) 0.659(11)

Wong 23 [35] 0 C ⋆ ◦ ⋆
√
t0 0.632(7) 0.670(8)

∗ r0ΛMS determined by us using
√
8t0/r0 = 0.9435(97) from Dalla Brida 19 [110] without propagating the

error.

Table 64: Results for the GF scheme in infinite volume.

Scale variations. As discussed in the general considerations of the previous subsection, the
matching with perturbation theory is performed for ḡ2GF(1/

√
8t) = 1.2. The corresponding
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energy scale µ = 1/
√
8t is not given in the publications, preventing us from using the generic

procedure that we used for the majority of the observables. Instead, we defined an alternative
procedure to estimate the effect of scale variations directly on the ratio of Λ-parameters, as
discussed in Sec. 9.9.1.

9.10 Summary

Having reviewed the individual computations, we are now in a position to discuss the overall
result. We first look at the current results of the Λ-parameter for QCD with Nf = 0, 2, 3, 4
flavours in units of the scale r0 (and

√
8t0 for Nf = 0). These results are directly obtained

from lattice simulations of QCD with given Nf . For the Λ-parameter with Nf = 0 we present a
more in depth discussion. As emphasized in our last report, even though Nf = 0 is unphysical,
the Λ-parameter enters into the decoupling result, which is one of the most accurate lattice

determinations of α
(5)

MS
(mZ). Fortunately, this has motivated several collaborations to help

clarify the situation, which is characterized by many historical results, with a large spread of
central values, that are mutually incompatible due to the smallness of some error estimates.
We have decided to estimate ranges for different methods and give a corresponding FLAG
estimate.

Then we discuss the central αMS(mZ) results in five-flavour QCD. We give ranges for each
sub-group discussed previously, and give a final FLAG average as well as an overall average
together with the current PDG nonlattice numbers. In the end, we return to the Λ-parameter;
for Nf = 3, 4, 5 we derive their values from the FLAG estimate of αMS(mZ).

We end with an outlook and some concluding remarks.

9.10.1 Ranges for [r0ΛMS]
(Nf ) and Λ

(Nf )

MS

In the present situation, we give ranges for [r0ΛMS]
(Nf ) and ΛMS, discussing their determi-

nation case by case. We include results with Nf < 3 because it is interesting to see the
Nf -dependence of the connection of low- and high-energy QCD. This aids our understanding
of the field theory and helps in finding possible ways to tackle it beyond the lattice approach.
It is also of interest in providing an impression on the size of the vacuum-polarization effects
of quarks, in particular with an eye on the still difficult-to-treat heavier charm and bot-
tom quarks. Most importantly, however, the decoupling strategy described in subsection 9.4
means that Λ-parameters at different Nf can be connected by a nonperturbative matching
computation. Thus, even results at unphysical flavour numbers, in particular Nf = 0, may
enter results for the physically interesting case. Rather than phasing out results for “unphys-
ical flavour numbers”, continued scrutiny by FLAG will be necessary. Having said this, we
emphasize that results for [r0ΛMS]

(0) and [r0ΛMS]
(2) are not meant to be used directly for

phenomenology.
For the ranges we obtain:

[r0ΛMS]
(4) = 0.70(3) , (391)

[r0ΛMS]
(3) = 0.809(23) , (392)

[r0ΛMS]
(2) = 0.79(+ 5

−15) , (393)

[r0ΛMS]
(0) = 0.647(11) . (394)
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No change has occurred since FLAG 21 for Nf = 2, 4, so we refer to the respective discussions
in earlier FLAG reports.

For Nf = 2 + 1, we take as a central value the weighted average of ALPHA 22 [32], Pe-
treczky 20 [31], Cali 20 [48], Ayala 20 [137], TUMQCD 19 [138], ALPHA 17 [105], HPQCD 10
[167], PACS-CS 09A [106] and Maltman 08 [168], and arrive at our range,

[r0ΛMS]
(3) = 0.809(23) , (395)

where the error is the one from the weighted average of those results, which are statistics-
dominated, namely PACS-CS 09A, ALPHA 17 and ALPHA 22, and the known correlation
between the latter two is taken into account. This is to be compared with the much smaller
error of 0.010, as obtained from the weighted average. There is good agreement with all 2+1
results without red tags. In physical units, using r0 = 0.472 fm and neglecting its error, we
get

Λ
(3)

MS
= 338(10)MeV , (396)

whereas the error of the straight weighted average is around 4MeV.
For Nf = 0 there are now 10 results which pass the FLAG criteria, four of which are

new since FLAG 21. Instead of averaging individual results we will group them by method,
produce pre-ranges and a final estimate for the range from combining the pre-ranges. There
are four different methods used:

• Step scaling: Combining Dalla Brida 19 with Bribian 21, Ishikawa 17 (with symmetrized
larger error) and ALPHA 98 in a weighted average, we obtain

[r0ΛMS]
(0) = 0.648(11) . (397)

Leaving out Ishikawa 17 with its asymmetric error, this would change to 0.651(11). For
the error we take the statistics-dominated one from Dalla Brida 19.

• Static potential/force: We combine Brambilla 10 with Brambilla 23 (both with sym-
metrized error, using the larger ones) in a weighted average,

[r0ΛMS]
(0) = 0.648(28) , (398)

where we use the error of the newer result for our estimate of the range.

• There are two new determinations with the GF scheme in infinite volume and con-
tinuous β-function, by Wong 23 and Hasenfratz 23. We use the central value of the
published paper by Hasenfratz 23 and include a perturbative uncertainty of five percent
as discussed in Sec. 9.9, and obtain,

[r0ΛMS]
(0) = 0.659(33) . (399)

• Wilson loops: There are two results which are, due to their tiny errors, causing the
tension noticed in our previous FLAG report. We performed a scale-variation analysis,
similar to the one explained in Sec. 9.9 for the GF scheme. Variations around the scale
of fastest apparent convergence (cf. Sec. 9.2.3) result in changes of up to 13 percent
even at the finest available lattice spacings. Another way to look at the data is to
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Figure 38: r0ΛMS estimates for Nf = 0 flavours. As discussed in the text, we group the results
by method and estimate pre-ranges. Only full green squares are used in our final ranges, pale
green squares indicate that the computations were not published or superseded by later more
complete ones.

note that both works perform continuum extrapolations of the Λ-parameter assuming
an a2-behaviour. On the other hand, there is a parametric uncertainty of O(α2

P (1/a))
which is neglected. If included as a second term in a fit, the error gets much larger,
and central values tend to increase. Stopping short of changing central values, we take
the (unweighted) average central value and include a symmetric range of ±7 percent as
perturbative uncertainty,

[r0ΛMS]
(0) = 0.618(43) . (400)

With these pre-ranges we perform a weighted average to obtain the central value, and then
take the statistics-dominated Dalla Brida 19 step-scaling error as our estimate of the range,

[r0ΛMS]
(0) = 0.647(11) ⇒ [

√
8t0ΛMS]

(0) = 0.610(10) . (401)

All results are shown in Fig. 39 and the Nf = 0 results, with our pre-range by method are
shown in Fig. 38.
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Figure 39: r0ΛMS estimates for Nf = 0, 2, 3, 4 flavours. Full green squares are used in our
final ranges, pale green squares also indicate that there are no red squares in the colour coding
but the computations were superseded by later more complete ones or not published, while
red open squares mean that there is at least one red square in the colour coding.
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α
MS

(MZ) Remark Tab.

ALPHA 17 [105] 2+1 A ⋆ ⋆ ⋆ 0.11852( 84) step scaling 57
PACS-CS 09A [106] 2+1 A ⋆ ⋆ ◦ 0.11800(300) step scaling 57

pre-range (average) 0.11848( 81)

AlPHA 22 [32] 2+1 A ⋆ ⋆ ⋆ 0.11823(84) decoupling Nf = 3 to Nf = 0 & step scaling 58

pre-range (average) 0.11823(84)

Ayala 20 [137] 2+1 A ◦ ⋆ ◦ 0.11836(88) Q-Q̄ potential 59

TUMQCD 19 [138] 2+1 A ◦ ⋆ ◦ 0.11671(+110
−57 ) Q-Q̄ potential (and free energy) 59

Takaura 18 [139, 140] 2+1 A ■ ◦ ◦ 0.11790(70)(+130
−120) Q-Q̄ potential 59

Bazavov 14 [141] 2+1 A ◦ ⋆ ◦ 0.11660(100) Q-Q̄ potential 59

Bazavov 12 [142] 2+1 A ◦ ◦ ◦ 0.11560(+210
−220) Q-Q̄ potential 59

pre-range with estimated pert. error 0.11782(165)

Cali 20 [48] 2+1 A ◦ ⋆ ⋆ 0.11863(114) vacuum pol. (position space) 60

Hudspith 18 [77] 2+1 P ◦ ⋆ ■ 0.11810(270)( +80
−220) vacuum polarization 60

JLQCD 10 [76] 2+1 A ■ ◦ ■ 0.11180(30)(+160
−170) vacuum polarization 60

pre-range with estimated pert. error 0.11863(360)

HPQCD 10 [167] 2+1 A ◦ ⋆ ⋆ 0.11840( 60) Wilson loops 61
Maltman 08 [168] 2+1 A ◦ ◦ ⋆ 0.11920(110) Wilson loops 61

pre-range with estimated pert. error 0.11871(128)

Petreczky 20 [31] 2+1 A ◦ ◦ ⋆ 0.11773(119) heavy current two points 62
Boito 20 [197, 203] 2+1 A ■ ■ ◦ 0.1177(20) use published lattice data 62
Petreczky 19 [194] 2+1 A ■ ■ ⋆ 0.1159(12) heavy current two points 62
JLQCD 16 [187] 2+1 A ■ ◦ ◦ 0.11770(260) heavy current two points 62
Maezawa 16 [193] 2+1 A ■ ■ ◦ 0.11622( 84) heavy current two points 62
HPQCD 14A [186] 2+1+1 A ◦ ⋆ ◦ 0.11822( 74) heavy current two points 62
HPQCD 10 [167] 2+1 A ◦ ⋆ ◦ 0.11830( 70) heavy current two points 62
HPQCD 08B [184] 2+1 A ■ ■ ■ 0.11740(120) heavy current two points 62

pre-range with estimated pert. error 0.11818(119)

Zafeiropoulos 19 [204] 2+1 A ■ ■ ■ 0.1172(11) gluon-ghost vertex 66 in [205]
ETM 13D [206] 2+1+1 A ◦ ◦ ■ 0.11960(40)(80)(60) gluon-ghost vertex 66 in [205]
ETM 12C [207] 2+1+1 A ◦ ◦ ■ 0.12000(140) gluon-ghost vertex 66 in [205]

ETM 11D [208] 2+1+1 A ◦ ◦ ■ 0.11980(90)(50)( +0
−50) gluon-ghost vertex 66 in [205]

Nakayama 18 [209] 2+1 A ⋆ ◦ ■ 0.12260(360) Dirac eigenvalues 67 in [205]

Table 65: Results for αMS(MZ). Different methods are listed separately and they are combined
to a pre-range when computations are available without any ■ . The FLAG estimate is given
by 0.11833(67), where the error is the statistics-dominated error of the combined decoupling
and step-scaling results.

9.10.2 Our range for α
(5)

MS

We now turn to the status of the essential result for phenomenology, α
(5)

MS
(MZ). We only

consider lattice results with Nf = 3 or Nf = 4 sea quarks. Converting a Λ-parameter to

α
(5)

MS
(MZ) involves the perturbative matching of the coupling across the charm- and bottom-

quark thresholds, which is available up to 4-loop order [22, 23]. Note that perturbative match-
ing at 4-loops is consistent with using the β-function at 5-loop order, which is also available
in the MS scheme [19, 210]. One then needs the Z-boson mass and the charm- and bottom-
quark masses as additional input. For definiteness, we use mZ = 91.1876 GeV, and, for the
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MS quark masses at their own scale, mc = 1.275(13) GeV and mb = 4.203(11) GeV [205].
Fortunately, the exact choices are almost irrelevant at the current accuracy: A change in the
charm-quark mass by one percent shifts the value of αs(mZ) by 3 × 10−5, and the effect for
the bottom-quark mass is even smaller. This is down by over a factor of 20 compared to
the current best total errors on αs. The combined perturbative uncertainty of decoupling
across both the charm- and the bottom-quark threshold is around 25× 10−5, if one takes the
difference between 3-loop and 5-loop order as estimate, as was done, for example, in ALPHA
17 [105]. Even this generous estimate is still a factor 2–3 below the best total errors. Inci-
dentally we also note that perturbative decoupling has been tested nonperturbatively [29].
It was found that the decoupling of a heavy quark in gluonic observables (such as the ones
used to define αeff), is well described by perturbation theory. Even for the charm quark the
nonperturbative effects are expected to be at the few per-mille level. This result justifies the

use of Nf = 3 QCD to obtain α
(5)

MS
(MZ), and it motivated the development of the decoupling

method used in ALPHA 22 [32].
As can be seen from the tables and figures, several computations satisfy the FLAG criteria

for inclusion in the FLAG average. Since FLAG 21 the contribution by Petreczky 20 [31] has
been published and is now included in the average and there is the first result from the
decoupling method by the ALPHA collaboration, ALPHA 22 [32].

We now explain the determination of our range. We only include those results without a
red tag and that are published in a refereed journal.

A general issue with most determinations of αMS, both lattice and nonlattice, is that they
are dominated by perturbative truncation errors, which are difficult to estimate. Further, all
results discussed here except for those of Secs. 9.3, 9.7, 9.4 are based on extractions of αMS

that are largely influenced by data with αeff ≥ 0.3. At smaller αs the momentum scale µ
quickly gets at or above a−1. We have included computations using aµ up to 1.5 and αeff

up to 0.4, but one would ideally like to be significantly below that. Accordingly, we choose
to not simply perform weighted averages with the individual errors estimated by each group.
Rather, we use our own more conservative estimates of the perturbative truncation errors
in the weighted average. In order to improve our assessment we have also performed scale
variations as is commonly done in phenomenology. In Tab. 66, we provide a summary of the

variations in α
(5)

MS
(MZ) obtained from the procedure explained in Sec. 9.1 and suggested in

Ref. [11].

Observable loops Q [GeV] δ∗(4)[%] δ(2)[%] δ∗(2)[%] Refs.

Step scaling 2 80 0.1 0.2 0.2 [69, 70]

3 1.5 2.6 2.7 [71–75]
Potential 2.5 0.9 1.5 1.5

5.0 0.4 0.8 0.8

Vacuum polarization 3 1.3 1.0 11.6 0.6 [48]

− logW11 2 4.4 2.8 3.3 2.5 [78, 79]
− logW12/u

6
0 4.4 3.5 3.2 3.1

HQ r4 2 mc 2.7 2.8 [80–82]
HQ r4 2mc 1.2 1.5 1.6
HQ r6 2mc 2.3 1.2
HQ r8 2mc 2.8 4.8

Table 66: Summary of the results of scale variations. We report results for those observables
for which we could use the common procedure introduced earlier.
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In the following we first obtain separate estimates for αs from each of the six methods
with results that pass the FLAG criteria: step scaling, decoupling, the heavy-quark potential,
Wilson loops, heavy-quark current two-point functions and vacuum polarization. In a second
step we combine them to obtain the overall FLAG estimate. All results are collected in
Tab. 65.

• Step scaling
The step-scaling computations of PACS-CS 09A [106] and ALPHA 17 [105] reach ener-
gies around the Z-mass where perturbative uncertainties in the three-flavour theory are
negligible. We form a weighted average of the two results and obtain αMS = 0.11848(81),
where the error is dominated by the statistical error from the simulations.

• Decoupling
There is a single result which has been discussed in Sec. 9.4. The result is αMS =
0.11823(84) with a statistics-dominated error.

• Static-quark potential computations
Brambilla 10 [148], ETM 11C [145] and Bazavov 12 [142] give evidence that they have
reached distances where perturbation theory can be used. However, in addition to Λ,
a scale is introduced into the perturbative prediction by the process of subtracting the
renormalon contribution. This subtraction is avoided in Bazavov 14 [141] by using
the force and again agreement with perturbative running is reported. Husung 17 [147]
(unpublished) studied the reliability of perturbation theory in the pure gauge theory
with lattice spacings down to 0.015 fm and found that at weak coupling there is a
downwards trend in the Λ-parameter with a slope ∆Λ/Λ ≈ 9α3

s. The downward trend
is broadly confirmed in Husung 20 [146] albeit with larger errors.

Bazavov 14 [141] satisfies all of the criteria to enter the FLAG average for αs but
has been superseded by TUMQCD 19 [138]. Moreover, there is another study, Ayala
20 [137] who use the very same data as TUMQCD 19, but treat perturbation theory
differently, resulting in a rather different central value. This shows that perturbative

truncation errors are the main source of errors. We combine the results for Λ
Nf=3

MS
from

both groups as a weighted average (with the larger upward error of TUMQCD 19) and
take the difference of the central values as the uncertainty of the average. We obtain

Λ
Nf=3

MS
= 330(24) MeV, which translates to αs(mZ) = 0.11782(165). This uncertainty

of 1.4 percent is in line with estimates from scale variations.

• Small Wilson loops
Here the situation is unchanged since FLAG 16. In the determination of αs from ob-
servables at the lattice spacing scale, there is an interplay of higher-order perturbative
terms and lattice artifacts. In HPQCD 05A [165], HPQCD 08A [78] and Maltman 08
[168] both lattice artifacts (which are power corrections in this approach) and higher-
order perturbative terms are fitted. We note that Maltman 08 [168] and HPQCD
08A [78] analyze largely the same data set but use different versions of the perturbative
expansion and treatments of nonperturbative terms. After adjusting for the slightly
different lattice scales used, the values of αMS(MZ) differ by 0.0004 to 0.0008 for the
three quantities considered. In fact the largest of these differences (0.0008) comes from a
tadpole-improved loop, which is expected to be best behaved perturbatively. We there-
fore replace the perturbative-truncation errors from [168] and [167] with our estimate
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of the perturbative uncertainty Eq. (369). Taking the perturbative errors to be 100%
correlated between the results, we obtain for the weighted average αMS = 0.11871(128).
We note that this assessment, taken over from FLAG 21, seems optimistic in the light
of the uncertainty induced by scale variations, which are at the level of three percent
for the plaquette and rectangle Wilson loops. One may expect that simultaneous con-
sideration of many quantities stabilizes the estimates as do terms of higher order in α.
It would be interesting to see a new study of this kind, possibly with a different action.
We may have to revise our range in the future.

• Heavy-quark current two-point functions
Further computations with small errors are HPQCD 10 [167] and HPQCD 14A [186],
where correlation functions of heavy valence quarks are used to construct short-distance
quantities. Due to the large quark masses needed to reach the region of small coupling,
considerable discretization errors are present, see Fig. 30 of FLAG 16. These are treated
by fits to the perturbative running (a 5-loop running αMS with a fitted 5-loop coefficient
in the β-function is used) with high-order terms in a double expansion in a2Λ2 and
a2m2

c supplemented by priors which limit the size of the coefficients. The priors play an
especially important role in these fits given the much larger number of fit parameters
than data points. We note, however, that the size of the coefficients does not prevent
high-order terms from contributing significantly, since the data includes values of amc

that are rather close to one.

From a physics perspective it seems natural to use the renormalization scale set by the
charm-quark mass; however, this implies αeff ≃ 0.38, which is the reason why JLQCD
16, Petreczky 19 [194] and Boito 20 [197] do not pass the FLAG criteria. Still some
valuable insight can be gained from these works. While Petreczky 19/Petreczky 20
share the same lattice data for heavy quark masses in the range mh = mc–4mc they
use a different strategy for continuum extrapolations and a different treatment of per-
turbative uncertainties. Petreczky 19 [194] perform continuum extrapolation separately
for each value of the valence-quark mass, while Petreczky 20 rely on joint continuum
extrapolations of the lattice data at different heavy-quark masses, similar to the anal-
ysis of HPQCD, but without Bayesian priors. It is concluded that reliable continuum
extrapolations for mh ≥ 2mc require a joint fit to the data. This limits the eligible αs

determinations in Petreczky 19 [194] to mh = mc and 1.5mc, for which, however, the
FLAG criteria are not satisfied. There is also a difference in the choice of renormaliza-
tion scale between both analyses: Petreczky 19 [194] uses µ = mh, while Petreczky 20
[31] considers several choices of µ in the range µ = 2/3mh–3mh, which leads to larger
perturbative uncertainties in the determination of αs [31]. Boito 20 [197] use published
continuum extrapolated lattice results for mh = mc and performs their own extraction
of αs. Limiting the choice of mh to the charm-quark mass means that the FLAG cri-
teria are not met (αeff ≃ 0.38). However, their analysis gives valuable insight into the
perturbative error. In addition to the renormalization scale µ, Boito 20 also vary the
renormalization scale µm at which the charm-quark mass is defined. The corresponding
result αs(MZ) = 0.1177(20) agrees well with previous lattice determination but has a
larger error, which is dominated by the perturbative uncertainty due to the variation of
both scales.

Since the FLAG 21 report the results of Petreczky 20 have been published and pass
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all FLAG criteria there are now three determinations of αs from the heavy-quark cur-
rent two-point functions that satisfy all the FLAG criteria and enter the FLAG aver-
age: αMS(MZ) = 0.11773(119) from Petreczky 20 [31], αMS(MZ) = 0.11822(74) from
HPQCD 14 [186] and αMS(MZ) = 0.11830(70) from HPQCD 10 [167]. All three de-
terminations agree well with each other within errors. Since these determinations are
uncorrelated we take the weighted average of these results as an estimate for the strong
coupling constants from the heavy-quark current two-point functions. The analysis in
Petreczky 20 does not use Bayesian priors and considers five different choices of the
renormalization scale, while HPQCD 10 and HPQCD 14 analyses use µ = 3mc. There-
fore, the error of Petreczky 20 can be considered to be more conservative and we take
it as the range for αMS(mZ). With this we arrive at αMS(MZ) = 0.11818(119) from
the method of the heavy-quark current two-point functions. Comparing with the scale
variations, the perturbative uncertainty is estimated to be 1-2 percent so a one percent
range is roughly in line.

• Light-quark vacuum polarization
Cali 20 [48] use the light-quark current two-point functions in position space, evaluated
on a subset of CLS configurations for lattice spacings in the range 0.038–0.076 fm, and
for Euclidean distances 0.13–0.19 fm, corresponding to renormalization scales µ = 1–
1.5 GeV. Both flavour-nonsinglet vector and axial-vector currents are considered and
their difference is shown to vanish within errors. After continuum and chiral limits
are taken, the effective coupling from the axial-vector two-point function is converted
at 3-loop order to αMS(µ). The authors do this by numerical solution for αMS and
then perform a weighted average of the Λ-parameter estimates for the available energy

range, which yields Λ
Nf=3

MS
= 342(17) MeV. Note that this is the first calculation in the

vacuum polarization category that passes the current FLAG criteria. Yet the renor-
malization scales are rather low and one might suspect that other nonperturbative (i.e.,
non-chiral-symmetry breaking) effects may still be sizeable. Our main issue is a rather
optimistic estimate of perturbative truncation errors, based only on the variation of the
Λ-parameter from the range of effective couplings considered. If the solution for the MS
coupling is done by series expansion in αeff, the differences in αMS, formally of order α5

eff,
are still large at the scales considered. Hence, as a measure of the systematic uncertainty

we take the difference 409 − 355 MeV between Λ
Nf=3

MS
estimates at µ = 1.5 GeV as a

proxy for the total error, i.e., Λ
Nf=3

MS
= 342(54) MeV, which translates to our pre-range,

αs(mZ) = 0.11863(360), from vacuuum polarization. Looking at scale variation it ap-
pears that these are of O(10) percent if the scale is identified as done by the authors.
The scale is simply too low for perturbation theory. It is an interesting observation
that a variation around the scale of fastest apparent convergence, cf. Sec. 9.2.3, yields
much smaller ambiguities of the order of one percent. A re-analyisis of the data might
be warranted.

• Other methods
Computations using other methods do not qualify for an average yet, predominantly
due to a lacking ◦ in the continuum extrapolation.

We form the average in two steps, due to the known correlation between ALPHA 17
and ALPHA 22. We thus first combine these two results by combining the respective Λ-
parameters and then obtain αs(mZ) = 0.11836(69). Next we combine with the step-scaling
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result by PACS CS-09A, and get α
(5)

MS
(mZ) = 0.11834(67). This average is interesting as it

combines the three results where the error is dominated by statistics. A weighted average
with the remaining pre-ranges yields the central value, we quote as the new FLAG estimate,

α
(5)

MS
(MZ) = 0.11833(67) = 0.1183(7) . (402)

where we have used the above statistics-dominated error as our range, rather than the 25
percent smaller error from the weighted average. All central values are remarkably consistent,
as can also be seen in Figure 40.

9.10.3 Conclusions

With the present results our range for the strong coupling is (repeating Eq. (402))

α
(5)

MS
(MZ) = 0.1183(7) Refs. [31, 32, 48, 105, 106, 137, 138, 167, 168, 186],

and the associated Λ-parameters

Λ
(5)

MS
= 213(8) MeV Refs. [31, 32, 48, 105, 106, 137, 138, 167, 168, 186], (403)

Λ
(4)

MS
= 295(10) MeV Refs. [31, 32, 48, 105, 106, 137, 138, 167, 168, 186], (404)

Λ
(3)

MS
= 338(10) MeV Refs. [31, 32, 48, 105, 106, 137, 138, 167, 168, 186], (405)

Compared with FLAG 21, the central values have only moved slightly and the errors have
been reduced by ca. 15-20 percent. Overall we find excellent agreement between all published
results that pass the FLAG criteria. The error for the reference value αMS(MZ) has reached
the level of 0.6 percent, and, as we emphasize again, dominated by the statistical errors
originating from the stochastic process inherent in lattice simulations. The same cannot

be said about nonlattice determinations, for which PDG 24 quote the value α
(5)

MS
(MZ) =

0.1175(10). Combining FLAG and PDG nonlattice estimates, we obtain

α
(5)

MS
(MZ) = 0.1181(7) , FLAG 24 + PDG 24, (406)

where we assign the error of the FLAG estimate as our range. In Fig. 40, we have collected
and summarized the results that go into the FLAG estimate and the PDG 23 average. The
agreement with nonlattice results is very good. Despite our conversative error estimate the
FLAG lattice estimate has an error that is 30% smaller than the PDG 23 nonlattice result.
Compared to high-energy experiments, lattice QCD has the advantage that the complicated
transition between hadronic and quark and gluon degrees of freedom never needs to be dealt
with explicitly. All hadronic input quantities are very well measured properties of hadrons,
such as their masses and decay widths. We would like to encourage experimentalists and
phenomenologists at collider experiments to make use of the FLAG lattice estimate. The
higher accuracy and precision, with improvements still possible and expected in the near
future, may help our understanding of other important physics aspects at the LHC and in
other experiments. Currently, many experiments attempt their own determination of αs, and
the spread of the results is then taken as indication of the size of systematic effects. While
this provides valuable information, one may ask whether one can learn more from the data
about the origin of the systematic uncertainties, by using the precise lattice result for αs as
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input for the analysis. This may clarify where tensions or inconsistencies arise and help our
understanding of nonperturbative effects, e.g., in hadronization processes, or in some corners
of parameter space. There is also the theoretical possibility that QCD does not provide the
full picture of the strong interactions. While experimental data would be affected by any new
physics, lattice QCD, by design, excludes such effects. Hence, any inconsistencies encountered
in the analysis might also point to such new effects.

We finish by commenting on perspectives for the future. This edition of the FLAG report
has seen the first result from the decoupling strategy, which complements the step-scaling
result. In fact, the decoupling result also relies on the step-scaling technique, however, here
it is applied in the Nf = 0 theory and therefore technically simpler, and with different
systematics. The nice agreement between Nf = 3 step-scaling and decoupling results is
therefore a very strong consistency check. Of course, further results with different schemes
and systematics would be very welcome. For step scaling with Nf = 0, Dalla Brida 19 have
used two different finite-volume schemes with SF boundary condtions, and there is now a
new result by Bribian 21 with twisted periodic b.c.’s. There are also results with the GF
scheme in infinite volume, where the β-function can be measured directly, by Hasenfratz 23
and Wong 23. In some sense, the case of Nf = 0 flavours is more difficult than full QCD, in
that the asymptotic regime is often harder to reach. Of course, part of the problem lies in
the smallness of statistical errors, which means that even moderate systematic errors easily
stand out. In particular, in GF schemes, both in finite and infinite volume, the parametric
uncertainties in the Λ-parameter of order αnl , Eq. (294), can be still quite large at the largest
scales reached while showing the expected asymptotic behaviour ∝ αnl over a wide range.
Rather than assigning a large systematic uncertainty at the highest scale reached, one might
be inclined to allow for an extrapolation in αnl , together with a data-driven criterion to assess
its quality. We will reconsider this issue in the next edition of the FLAG report.

Finally we emphasize the importance that errors remain dominated by statistics. Only in
this case a probabilistic interpretation is obvious. This is currently not the case for the ma-
jority of lattice calculations, the exception being the step-scaling and decoupling approaches.
For those determinations, further improvements will require access to higher energy scales,
for instance, by implementing some elements of the step-scaling approach.
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[177] [QCDSF/UKQCD 04A] M. Göckeler, R. Horsley, A. Irving, D. Pleiter, P. Rakow,
G. Schierholz et al., Determination of Λ in quenched and full QCD: an update,
Nucl.Phys.Proc.Suppl. 140 (2005) 228 [hep-lat/0409166].
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Running Coupling from the Gauge Sector of Domain Wall Lattice QCD with Physical
Quark Masses, Phys. Rev. Lett. 122 (2019) 162002 [1902.08148].

[205] [FLAG 21] Y. Aoki et al., FLAG Review 2021, Eur. Phys. J. C 82 (2022) 869
[2111.09849].

[206] [ETM 13D] B. Blossier et al., High statistics determination of the strong coupling con-
stant in Taylor scheme and its OPE Wilson coefficient from lattice QCD with a dynam-
ical charm, Phys.Rev. D89 (2014) 014507 [1310.3763].

[207] [ETM 12C] B. Blossier, P. Boucaud, M. Brinet, F. De Soto, X. Du et al., The strong
running coupling at τ and Z0 mass scales from lattice QCD, Phys.Rev.Lett. 108 (2012)
262002 [1201.5770].

[208] [ETM 11D] B. Blossier, P. Boucaud, M. Brinet, F. De Soto, X. Du et al., Ghost-
gluon coupling, power corrections and ΛMS from lattice QCD with a dynamical charm,
Phys.Rev. D85 (2012) 034503 [1110.5829].

[209] K. Nakayama, H. Fukaya and S. Hashimoto, Lattice computation of the Dirac eigenvalue
density in the perturbative regime of QCD, Phys. Rev.D98 (2018) 014501 [1804.06695].

[210] K.G. Chetyrkin, G. Falcioni, F. Herzog and J.A.M. Vermaseren, Five-loop renormali-
sation of QCD in covariant gauges, JHEP 10 (2017) 179 [1709.08541], [Addendum:
JHEP 12, 006 (2017)].

73

http://arxiv.org/abs/2411.04268
https://doi.org/10.1103/PhysRevD.80.074010
https://arxiv.org/abs/0907.2110
https://doi.org/10.1007/JHEP03(2020)094
https://arxiv.org/abs/2001.11041
https://doi.org/10.1103/PhysRevD.88.074504
https://doi.org/10.1103/PhysRevD.88.074504
https://arxiv.org/abs/1303.1670
https://doi.org/10.22323/1.396.0354
https://arxiv.org/abs/2203.07936
https://doi.org/10.22323/1.430.0358
https://arxiv.org/abs/2211.15750
https://doi.org/10.1007/JHEP02(2011)051
https://arxiv.org/abs/1101.0963
https://doi.org/10.1051/epjconf/201817508027
https://arxiv.org/abs/1711.04833
https://doi.org/10.1016/j.physletb.2020.135482
https://doi.org/10.1016/j.physletb.2020.135482
https://arxiv.org/abs/1912.06237
https://doi.org/10.1103/PhysRevLett.122.162002
https://arxiv.org/abs/1902.08148
https://doi.org/10.1140/epjc/s10052-022-10536-1
https://arxiv.org/abs/2111.09849
https://doi.org/10.1103/PhysRevD.89.014507
https://arxiv.org/abs/1310.3763
https://doi.org/10.1103/PhysRevLett.108.262002
https://doi.org/10.1103/PhysRevLett.108.262002
https://arxiv.org/abs/1201.5770
https://doi.org/10.1103/PhysRevD.85.034503
https://arxiv.org/abs/1110.5829
https://doi.org/10.1103/PhysRevD.98.014501
https://arxiv.org/abs/1804.06695
https://doi.org/10.1007/JHEP10(2017)179
https://arxiv.org/abs/1709.08541


Y. Aoki et al. FLAG Review 2024 2411.04268

0.110 0.115 0.120 0.125
Nakayama 18
ETM 11D
ETM 12C
ETM 13D
Zafeiropoulos 19
HPQCD 08B
HPQCD 10
HPQCD 14A
JLQCD 16
Maezawa 16
Petreczky 19
Boito 20
Petreczky 20
HPQCD 05A
HPQCD 08A
Maltman 08
HPQCD 10
JLQCD 10
Hudspith 18
Cali 20
Bazavov 12
Bazavov 14
Takaura 18
TUMQCD 19
Ayala 20
ALPHA 22
PACS-CS 09A
ALPHA 17
FLAG estimate

0.110 0.115 0.120 0.125
tau-decays & low 

 bound states
PDF Fits

+  jets & shapes
hadron colliders
electroweak

PDG 23 nonlattice average

heavy current two points
Wilson loops

-  potential
step scaling
vacuum polarization
decoupling

FLAG estimate

FLAG + PDG 23 nonlattice

Figure 40: α
(5)

MS
(MZ), the coupling constant in the MS scheme at the Z-boson mass. Top:

lattice results, pre-ranges from different calculation methods, and final average. Bottom:
Comparison of the lattice pre-ranges and average with the nonlattice ranges and average.
The first PDG 23 entry gives the outcome of their analysis excluding lattice results. At the
very top we display the weighted average of PDG 23 nonlattice and FLAG lattice estimates,
with the error taken from the FLAG estimate (statistics dominated), see Sec. 9.10.3.
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