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The mixing of neutral pseudoscalar mesons plays an important role in the understanding
of the physics of quark-flavour mixing and CP violation. In this section, we discuss K0 − K̄0

oscillations, which probe the physics of indirect CP violation. Extensive reviews on this
subject can be found in Refs. [1–6]. The main changes in this section with respect to the
FLAG 21 edition [7] are as follows: A discussion on the ϵK calculation has been added in
Sec. 6.1. An updated discussion regarding new lattice determinations of the K → ππ decay
amplitudes and related quantities is provided in Sec. 6.2. New FLAG averages for SM and
BSM bag parameters are reported in Secs. 6.3 and 6.4, which concern the kaon mixing within
the Standard Model (SM) and Beyond the Standard Model (BSM), respectively.

6.1 Indirect CP violation and ϵK in the SM

Indirect CP violation arises in KL → ππ transitions through the decay of the CP = +1
component of KL into two pions (which are also in a CP = +1 state). Its measure is defined
as

ϵK =
A[KL → (ππ)I=0]

A[KS → (ππ)I=0]
, (82)

with the final state having total isospin zero. The parameter ϵK may also be expressed
in terms of K0 − K̄0 oscillations. In the Standard Model, ϵK is given by the following
expression [5, 8–11]

ϵK = exp(iϕϵ) sin(ϕϵ)

[
Im(MSD

12 )

∆MK
+

Im(MLD
12 )

∆MK
+

Im(A0)

Re(A0)

]
, (83)

where the various contributions can be related to: (i) short-distance (SD) physics given by
∆S = 2 “box diagrams” involving W± bosons and u, c and t quarks; (ii) long-distance (LD)
physics from light hadrons contributing to the imaginary part of the dispersive amplitude
M12, Im (MLD

12 ), used in the two-component description of K0 − K̄0 mixing; (iii) the imag-
inary part of the absorptive amplitude Γ12 from K0 − K̄0 mixing which can be related to
Im(A0)/Re(A0), where A0 is the K → (ππ)I=0 decay amplitude, as (ππ)I=0 states provide
the dominant contribution to the absorptive part of the integral in Γ12. The various factors
of this decomposition may vary according to phase conventions. In terms of the ∆S = 2
effective Hamiltonian, H∆S=2

eff , it is common to represent contribution (i) by

Im(MSD
12 ) ≡ 1

2MK
Im[⟨K̄0|H∆S=2

eff |K0⟩] . (84)

The phase of ϵK is given by

ϕϵ = arctan
∆MK

∆ΓK/2
. (85)
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The quantities ∆MK and ∆ΓK are the mass and decay width differences between long- and
short-lived neutral kaons. The experimentally known values of the above quantities are [12]:

|ϵK | = 2.228(11)× 10−3 , (86)

ϕϵ = 43.52(5)◦ , (87)

∆MK ≡ MKL
−MKS

= 3.484(6)× 10−12MeV , (88)

∆ΓK ≡ ΓKS
− ΓKL

= 7.3382(33)× 10−12MeV , (89)

where the latter three measurements have been obtained by imposing CPT symmetry.
We will start by discussing the short-distance effects (i) since they provide the dominant

contribution to ϵK . To lowest order in the electroweak theory, the contribution to K0 − K̄0

oscillations arises from the box diagrams, in which two W bosons and two “up-type” quarks
(i.e., up, charm, top) are exchanged between the constituent down and strange quarks of the
K mesons. The loop integration of the box diagrams can be performed exactly. In the limit
of vanishing external momenta and external quark masses, the result can be identified with
an effective four-fermion interaction, expressed in terms of the effective Hamiltonian

H∆S=2
eff =

G2
FM

2
W

16π2
F0Q∆S=2 + h.c. . (90)

In this expression, GF is the Fermi coupling, MW the W -boson mass, and

Q∆S=2 = [s̄γµ(1− γ5)d] [s̄γµ(1− γ5)d] ≡ OVV+AA −OVA+AV , (91)

is a dimension-six, four-fermion operator. The subscripts V and A denote vector (s̄γµd) and
axial-vector (s̄γµγ5d) bilinears, respectively. The function F0 is given by

F0 = λ2
cS0(xc) + λ2

tS0(xt) + 2λcλtS0(xc, xt) , (92)

where λa = V ∗
asVad, and a = c , t denotes a flavour index. The quantities S0(xc), S0(xt) and

S0(xc, xt) with xc = m2
c/M

2
W, xt = m2

t /M
2
W are the Inami-Lim functions [13], which express

the basic electroweak loop contributions without QCD corrections. The contribution of the
up quark, which is taken to be massless in this approach, has been taken into account by
imposing the unitarity constraint λu + λc + λt = 0. By substituting λc = −λu − λt, one can
rewrite F0 as [14, 15]

F0 = λ2
uS0(xc) + λ2

t [S0(xt) + S0(xc)− 2S0(xc, xt)] + 2λuλt[S0(xc)− S0(xc, xt)] . (93)

Equations (92) and (93) are denoted as “c-t unitarity” and “u-t unitarity”, respectively. Since
λ2
uS0(xc) is real, it does not factor into ϵK , even when accounting for QCD corrections.
When strong interactions are included, ∆S = 2 transitions can no longer be discussed at

the quark level. Instead, the effective Hamiltonian must be considered between mesonic initial
and final states. Since the strong coupling is large at typical hadronic scales, the resulting
weak matrix element cannot be calculated in perturbation theory. The operator product
expansion (OPE) does, however, factorize long- and short-distance effects. For energy scales
below the charm threshold, the K0 − K̄0 transition amplitude of the effective Hamiltonian
can be expressed in terms of the c-t unitarity framework as follows

⟨K̄0|H∆S=2
eff |K0⟩ =

G2
FM

2
W

16π2

[
λ2
cS0(xc)η1 + λ2

tS0(xt)η2 + 2λcλtS0(xc, xt)η3

]
×
(
ḡ(µ)2

4π

)−γ0/(2β0)

exp

{∫ ḡ(µ)

0
dg

(
γ(g)

β(g)
+

γ0
β0g

)}
⟨K̄0|Q∆S=2

R (µ)|K0⟩ + h.c. , (94)
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where ḡ(µ) and Q∆S=2
R (µ) are the renormalized gauge coupling and the four-fermion opera-

tor in some renormalization scheme. The factors η1, η2 and η3 depend on the renormalized
coupling ḡ, evaluated at the various flavour thresholds mt,mb,mc and MW, as required by
the OPE and Renormalization-Group (RG) running procedure that separate high- and low-
energy contributions. Explicit expressions can be found in Ref. [4] and references therein,
except that η1 and η3 have been calculated to NNLO in Refs. [16] and [17], respectively. We
follow the same conventions for the RG equations as in Ref. [4]. Thus the Callan-Symanzik
function and the anomalous dimension γ(ḡ) of Q∆S=2 are defined by

dḡ

d lnµ
= β(ḡ) ,

dQ∆S=2
R

d lnµ
= −γ(ḡ)Q∆S=2

R , (95)

with perturbative expansions

β(g) = −β0
g3

(4π)2
− β1

g5

(4π)4
− · · · , (96)

γ(g) = γ0
g2

(4π)2
+ γ1

g4

(4π)4
+ · · · .

We stress that β0, β1 and γ0 are universal, i.e., scheme independent. As for K0 − K̄0 mixing,
this is usually considered in the naive dimensional regularization (NDR) scheme of MS, and
below we specify the perturbative coefficient γ1 in that scheme:

β0 =

{
11

3
N − 2

3
Nf

}
, β1 =

{
34

3
N2 −Nf

(
13

3
N − 1

N

)}
, (97)

γ0 =
6(N − 1)

N
, γ1 =

N − 1

2N

{
−21 +

57

N
− 19

3
N +

4

3
Nf

}
.

Note that for QCD the above expressions must be evaluated for N = 3 colours, while Nf

denotes the number of active quark flavours. As already stated, Eq. (94) is valid at scales
below the charm threshold, after all heavier flavours have been integrated out, i.e., Nf = 3.

In Eq. (94), the terms proportional to η1, η2 and η3, multiplied by the contributions
containing ḡ(µ)2, correspond to the Wilson coefficient of the OPE, computed in perturbation
theory. Its dependence on the renormalization scheme and scale µ is canceled by that of the
weak matrix element ⟨K̄0|Q∆S=2

R (µ)|K0⟩. The latter corresponds to the long-distance effects
of the effective Hamiltonian and must be computed nonperturbatively. For historical, as well
as technical reasons, it is convenient to express it in terms of the B-parameter BK , defined
as

BK(µ) =

〈
K̄0

∣∣Q∆S=2
R (µ)

∣∣K0
〉

8
3f

2
KM2

K

. (98)

The four-quark operator Q∆S=2(µ) is renormalized at scale µ in some regularization scheme,
for instance, NDR-MS. Assuming that BK(µ) and the anomalous dimension γ(g) are both
known in that scheme, the renormalization group independent (RGI) B-parameter B̂K is
related to BK(µ) by the exact formula

B̂K =

(
ḡ(µ)2

4π

)−γ0/(2β0)

exp

{∫ ḡ(µ)

0
dg

(
γ(g)

β(g)
+

γ0
β0g

)}
BK(µ) . (99)
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At NLO in perturbation theory, the above reduces to

B̂K =

(
ḡ(µ)2

4π

)−γ0/(2β0){
1 +

ḡ(µ)2

(4π)2

[
β1γ0 − β0γ1

2β2
0

]}
BK(µ) . (100)

To this order, this is the scale-independent product of all µ-dependent quantities in Eq. (94).
Lattice-QCD calculations provide results for BK(µ). However, these results are usually

obtained in intermediate schemes other than the continuum MS scheme used to calculate
the Wilson coefficients appearing in Eq. (94). Examples of intermediate schemes are the
RI/MOM scheme [18] (also dubbed the “Rome-Southampton method”) and the Schrödinger
functional (SF) scheme [19]. These schemes permit the nonperturbative renormalization of
the four-fermion operator to be conducted, using an auxiliary lattice simulation. This allows
BK(µ) to be calculated with percent-level accuracy, as described below.

In order to make contact with phenomenology, however, and in particular to use the
results presented above, one must convert from the intermediate scheme to the MS scheme
or to the RGI quantity B̂K . This conversion relies on 1- or 2-loop perturbative matching
calculations, the truncation errors in which are, for many calculations, the dominant source
of error in B̂K (see, for instance, Refs. [20–25]). While this scheme-conversion error is not,
strictly speaking, an error of the lattice calculation itself, it must be included in results for
the quantities of phenomenological interest, namely, BK(MS, 2GeV) and B̂K . Incidentally,
we remark that this truncation error is estimated in different ways and that its relative
contribution to the total error can considerably differ among the various lattice calculations.
We note that this error can be minimized by matching between the intermediate scheme
and MS at as large a scale µ as possible (so that the coupling which determines the rate of
convergence is minimized). The latest available calculations have pushed the matching µ up
to the range 3–3.5 GeV. This is possible because of the use of nonperturbative RG running
determined on the lattice [21, 23, 26]. The Schrödinger functional offers the possibility to
run nonperturbatively to scales µ ∼ MW where the truncation error can be safely neglected.
However, so far this has been applied only for two flavours for BK in Ref. [27] and for the
case of the BSM bag parameters in Ref. [28], and in Ref. [29] for three flavours. (See more
details in Sec. 6.4.)‘

Perturbative truncation errors in Eq. (94) also affect the Wilson coefficients η1, η2 and η3.
It turns out that the largest uncertainty arises from the charm quark contribution η1 =
1.87(76) [16]. Although it is now calculated at NNLO, the series shows poor convergence.
The net effect from the uncertainty on η1 on the amplitude in Eq. (94) is larger than that of
present lattice calculations of BK . Exploiting an idea presented in Ref. [14], it has been shown
in Ref. [15] that, by using the u-t instead of the usual c-t unitarity in the ϵK computation, the
perturbative uncertainties associated with residual short-distance quark contributions can be
reduced. We will elaborate upon this point later.

Returning to Eq. (83), we note that an analytical estimate of the leading contribution from
Im(MLD

12 ) based on χPT, shows that it is approximately proportional to ξ0 ≡ Im(A0)/Re(A0)
so that Eq. (83) can be written as follows [10, 11]:

ϵK = exp(iϕϵ) sin(ϕϵ)
[ Im(MSD

12 )

∆MK
+ ρ ξ0

]
, (101)

where the deviation of ρ from one parameterizes the long-distance effects in Im(M12).
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The general formula presented in Eq. (101) for the parameter ϵK provides one of the most
valuable inputs for tests of CKM unitarity. Moreover, it holds significant potential as a probe
for New Physics, provided that its precision can be enhanced. In the following, we will provide
a general overview of the current status of the computation of |ϵK |.

With a very good approximation the formula for |ϵK | can be written in the so-called
Wolfenstein parametrization [30]. The determination of |ϵK | requires the knowledge of more
than a dozen input quantities, which can be categorized into four groups. The first group
includes six quantities (GF , ϕϵ,MK0 ,∆MK ,MW andmt) whose values are known from experi-
ment with high precision. The second group consists of several observables computed in lattice
QCD, including the kaon decay constant fK , the charm-quark mass mc(mc), the neutral kaon
mixing bag parameter BK , and the ratio ξ0 = Im(A0)/Re(A0).

1 Moreover, the values of the
CKM matrix elements |Vud|, |Vus| and |Vcb| are required—see for instance Ref. [32]—which
are based on lattice-QCD computations. It is worth recalling that the present FLAG report
provides average values for these quantities, see Secs. 5 and 8. The third group involves
the short-distance interaction factors calculated in perturbation theory. In the c-t unitarity
formula, these factors are η1, η2, and η3, as mentioned earlier in this section and shown in
Eq. (94). In the u-t unitarity case, there appear only two relevant factors (see Refs. [15, 33]).
Finally, the fourth group of inputs consists of the pair of CKM triangle variables (ρ, η) whose
values are estimated from the unitarity triangle analysis. In particular, the Angle-only Fit
(AoF) analysis used in Refs. [34–36] (see also Ref. [37]) prevents any correlation of (ρ, η) with
the rest of the inputs used in the formula for |ϵK |.

Among the various inputs, given its precision, the value of |Vcb| has a dominant impact on
both the statistically propagated error and the systematic uncertainty of the final |ϵK | result.
The substantial statistical error arises due to the amplified propagated error caused by the
fourth-power dependence of |Vcb| in the |ϵK | formula.

The main source of systematic uncertainty is particularly significant, as it stems from the
known tension between the values of |Vcb| obtained from exclusive decays (derived from lattice
calculations of the relevant form factors) and those derived from inclusive decays. The total
errors associated with both determinations are comparable, yet their values differ by nearly
three standard deviations, as discussed in Sec. 8.

Another significant source of uncertainty, when the c-t unitarity formula for |ϵK | is em-
ployed, is related to the factor η1 that is computed to NNLO in perturbation theory. For
more information on the estimation of the systematic error due to perturbative truncation, see
Refs. [16, 35, 38]. This source of uncertainty can be mitigated by adopting the u-t unitarity
formula for |ϵK |. In this case, it is found that the two relevant QCD perturbative factors are
not subject to significant systematic uncertainties. Furthermore, this approach reduces the
correlations between the individual perturbative contributions [15].

We close this discussion by mentioning that the use of the u-t unitarity formula leads to a
total statistical error of about 8% in |ϵK |. In this case, when analyzing the error budget, we
see that nearly half of the total error comes from the propagation of the uncertainty from |Vcb|.
Furthermore, the propagated error owing to the η error is the second most significant source
of uncertainty in |ϵK |. It is noteworthy that the propagated error from BK is much smaller,
accounting for only a few percent in the final error budget. It should also be noted that the

1Furthermore, the long-distance effects owing to light hadrons can be estimated on the lattice as noted
below in Sec. 6.2, c.f. Ref. [31]. However, the current accuracy of this calculation is not yet high enough to
constrain the determination of |ϵK |.
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relative uncertainties contributing to the error budget are rather sensitive to improvements
in the precision of |Vcb|. 2 On the other hand, the additional systematic uncertainty due to
the tension of the inclusive and exclusive determinations of |Vcb| is much larger than the
statistical one. It is worth adding that the use of the inclusive |Vcb| determination brings the
theoretical estimate of |ϵK | to be compatible with the experimental value. The resolution of
this long-standing tension, in conjunction with a reduction in the overall uncertainty of |ϵK |,
is highly desirable in order to enhance its impact on the search for New Physics. 3

In order to facilitate the subsequent discussions about the status of the lattice studies of
K → ππ and of the current estimates of ξ0 ≡ Im(A0)/Re(A0), we provide a brief account of
the parameter ϵ′ that describes direct CP-violation in the kaon sector. The definition of ϵ′ is
given by:

ϵ′ ≡ 1√
2

A[KS → (ππ)I=2]

A[KS → (ππ)I=0]

(
A[KL → (ππ)I=2]

A[KS → (ππ)I=2]
− A[KL → (ππ)I=0]

A[KS → (ππ)I=0]

)
. (102)

By selecting appropriate phase conventions for the mixing parameters between K0 and K̄0

CP-eigenstates (see, e.g., Ref. [2] for further details), the expression of ϵ′ can be expressed in
terms of the real and imaginary parts of the isospin amplitudes as follows:

ϵ′ =
iω ei(δ2−δ0)

√
2

[
ξ2 − ξ0

]
, (103)

where ω ≡ Re(A2)/Re(A0), ξ2 ≡ Im(A2)/Re(A2), A2 denotes the ∆I = 3/2 K → ππ decay
amplitude, and δI denotes the strong scattering phase shifts in the corresponding, I = 0, 2,
K → (ππ)I decays. Given that the phase ϕ′

ϵ = δ2 − δ0 + π/2 ≈ 42.3(1.5)◦ [12] is nearly equal
to ϕϵ in Eq. (87), the ratio of parameters characterizing the direct and indirect CP-violation
in the kaon sector can be approximated in the following way,

ϵ′/ϵ ≈ Re(ϵ′/ϵ) =
ω√
2 |ϵK |

[
ξ2 − ξ0

]
, (104)

where on the left hand side we have set ϵ ≡ ϵK . The experimentally measured value reads [12],

Re(ϵ′/ϵ) = 16.6(2.3)× 10−4 . (105)

We remark that isospin breaking and electromagnetic effects (see Refs. [41, 42], and the
discussion in Ref. [3]) introduce additional correction terms into Eq. (104).

6.2 Lattice-QCD studies of the K → (ππ)I decay amplitudes, ξ0, ξ2 and ϵ′/ϵ

As a preamble to this section, it should be noted that the study of K → ππ decay ampli-
tudes requires the development of computational strategies that are at the forefront of lattice
QCD techniques. These studies represent a significant advance in the study of kaon physics.
However, at present, they have not yet reached the same level of maturity of most of the
quantities analyzed in the FLAG report, where, for instance, independent results by various

2For a recent analysis with the c-t unitarity formulae see Ref. [32] and references therein.
3Note that a more precise determination of |ϵK | will require taking into account the effect of short-distance

power corrections from dim-8 operators to the ∆S = 2 effective Hamiltonian. It is estimated that their effect
leads to an increase of the central value by 1%, see Refs. [39, 40].
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lattice collaborations are being compared and averaged. We will, therefore, review the current
status of K → ππ lattice computations, but we will provide a FLAG average only for the case
of the decay amplitude A2.

We start by reviewing the determination of the parameter ξ0 = Im(A0)/Re(A0). An esti-
mate of ξ0 has been obtained from a direct evaluation of the ratio of amplitudes Im(A0)/Re(A0),
where Im(A0) is determined from a lattice-QCD computation by RBC/UKQCD 20 [43] em-
ploying Nf = 2+1 Möbius domain-wall fermions at a single value of the lattice spacing, while
Re(A0) ≃ |A0| and the value |A0| = 3.320(2) × 10−7 GeV are used based on the relevant
experimental input [44] from the decay to two pions. This leads to a result for ξ0 with a
rather large relative error,

ξ0 = −2.1(5)× 10−4. (106)

Following a similar procedure, an estimate of ξ0 was obtained through the use of a previous
lattice QCD determination of Im(A0) by RBC/UKQCD 15G [45]. We refer to Tab. 22 for
further details about these computations of Im(A0). The comparison of the estimates of ξ0
based on lattice QCD input are collected in Tab. 24.

To determine the value of ξ0, the expression in Eq. (104) together with the experi-
mental values of Re(ϵ′/ϵ), |ϵK | and ω can also be used. This approach has been pursued
with the help of a lattice-QCD calculation of the ratio of amplitudes Im(A2)/Re(A2) by
RBC/UKQCD 15F [46] where the continuum-limit result is based on computations at two
values of the lattice spacing employing Nf = 2 + 1 Möbius domain-wall fermions. Further
details about the lattice computations of A2 are collected in Tab. 23. In this case, we obtain
ξ0 = −1.6(2) × 10−4. The use of the updated value of Im(A2) = −8.34(1.03) × 10−13GeV
from Ref. [43], in combination with the experimental value of Re(A2) = 1.479(4)× 10−8GeV,
introduces a small change with respect to the above result.4 The value for ξ0 reads 5

ξ0 = −1.7(2)× 10−4. (107)

A phenomenological estimate can also be obtained from the relationship of ξ0 to Re(ϵ′/ϵ),
using the experimental value of the latter and further assumptions concerning the estimate
of hadronic contributions. The corresponding value of ξ0 reads [10, 11]

ξ0 = −6.0(1.5)× 10−2 ×
√
2 |ϵK | = −1.9(5)× 10−4. (108)

We note that the use of the experimental value for Re(ϵ′/ϵ) is based on the assumption that
it is free from New Physics contributions. The value of ξ0 can then be combined with a χPT-
based estimate for the long-range contribution, ρ = 0.6(3) [11]. Overall, the combination ρξ0
appearing in Eq. (101) leads to a suppression of the SM prediction of |ϵK | by about 3(2)%
relative to the experimental measurement of |ϵK | given in Eq. (86), regardless of whether
the phenomenological estimate of ξ0 [see Eq. (108)] or the most precise lattice result [see
Eq. (106)] are used. The uncertainty in the suppression factor is dominated by the error on ρ.

4The update in Im(A2) is due to a change in the value of the imaginary part of the ratio of CKM matrix
elements, τ = −V ∗

tsVtd/V
∗
usVud, as given in Ref. [47]. The lattice-QCD input is therefore the one reported in

Ref. [46].
5The current estimates for the corrections owing to isospin breaking and electromagnetic effects [42] imply

a relative change on the theoretical value for ϵ′/ϵ by about −20% with respect to the determination based on
Eq. (104). The size of these isospin breaking and electromagnetic corrections is related to the enhancement
of the decay amplitudes between the I = 0 and the I = 2 channels. As a consequence, one obtains a similar
reduction on ξ0, leading to a value that is close to the result of Eq. (106).
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Re(A0) Im(A0)
[10−7 GeV] [10−11 GeV]

RBC/UKQCD 23A [53] 2+1 A ■ ◦ ⋆ ⋆ a 2.84(0.57)(0.87) −8.7(1.2)(2.6)

RBC/UKQCD 20 [43] 2+1 A ■ ◦ ◦ ⋆ a 2.99(0.32)(0.59) −6.98(0.62)(1.44)

RBC/UKQCD 15G [45] 2+1 A ■ ◦ ◦ ⋆ b 4.66(1.00)(1.26) −1.90(1.23)(1.08)

a Nonperturbative renormalization with the RI/SMOM scheme at a scale of 1.53GeV and running to
4.0GeV employing a nonperturbatively determined step-scaling function. Conversion to MS at 1-loop
order.

b Nonperturbative renormalization with the RI/SMOM scheme at a scale of 1.53GeV. Conversion to MS
at 1-loop order at the same scale.

Table 22: Results for the real and imaginary parts of the K → ππ decay amplitude A0

from lattice-QCD computations with Nf = 2 + 1 dynamical flavours. Information about the
renormalization, running and matching to the MS scheme is indicated in the column “run-
ning/matching”, with details given at the bottom of the table. We refer to the text for further
details about the main differences between the lattice computations in Refs. [43] and [45].

Although this is a small correction, we note that its contribution to the error of ϵK is larger
than that arising from the value of BK reported below.

The evolution of lattice-QCD methodologies has enabled recent ongoing efforts to calculate
the long-distance contributions to ϵK [31, 48] and the KL − KS mass difference [14, 49–52].
However, the results are not yet precise enough to improve the accuracy in the determination
of the parameter ρ.

The lattice-QCD study of K → ππ decays provides crucial input to the SM prediction
of ϵK . During the last decade, the RBC/UKQCD collaboration has undertaken a series of
lattice-QCD calculations of K → ππ decay amplitudes [43, 45, 46, 53]. In 2015, the first
calculation of the K → (ππ)I=0 decay amplitude A0 was performed using physical kinematics
on a 323 × 64 lattice with an inverse lattice spacing of a−1 = 1.3784(68) GeV [45, 54]. The
main features of the RBC/UKQCD 15G calculation included, fixing the I = 0 ππ energy
very close to the kaon mass by imposing G-parity boundary conditions, a continuum-like
operator mixing pattern through the use of a domain-wall fermion action with accurate chiral
symmetry, and the construction of the complete set of correlation functions by computing
seventy-five distinct diagrams. Results for the real and the imaginary parts of the decay
amplitude A0 from the RBC/UKQCD 15G computation are collected in Tab. 22, where the
first error is statistical and the second is systematic.

The calculation in RBC/UKQCD 20 [43] using the same lattice setup has improved upon
RBC/UKQCD 15G [45] in three important aspects: (i) an increase in statistics by a factor
of 3.4; (ii) the inclusion of a scalar two-quark operator and the addition of another pion-pion
operator to isolate the ground state, and (iii) the use of step scaling techniques to raise the
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Re(A2) Im(A2)
[10−8 GeV] [10−13 GeV]

RBC/UKQCD 23A [53] 2+1 A ■ ◦ ⋆ ⋆ a 1.74(0.15)(0.48) −5.91(0.13)(1.75)

RBC/UKQCD 15F [46] 2+1 A ◦ ◦ ⋆ ⋆ b 1.50(0.04)(0.14) −8.34(1.03)♢

a Nonperturbative renormalization with the RI/SMOM scheme at a scale of 1.53GeV and running to
4.0GeV employing a nonperturbatively determined step-scaling function. Conversion to MS at 1-loop
order.

b Nonperturbative renormalization with the RI/SMOM scheme at a scale of 3 GeV. Conversion to MS
at 1-loop order.

♢ This value of Im(A2) is an update reported in Ref. [43] which is based on the lattice QCD computation
in Ref. [46] but where a change in the value of the imaginary part of the ratio of CKM matrix elements
τ = −V ∗

tsVtd/V
∗
usVud reported in Ref. [47] has been applied.

Table 23: Results for the real and the imaginary parts of theK → ππ decay amplitude A2 from
lattice-QCD computations with Nf = 2+1 dynamical flavours. Information about the renor-
malization and matching to the MS scheme is indicated in the column “running/matching”,
with details given at the bottom of the table.

renormalization scale from 1.53 GeV to 4.01 GeV. The updated determinations of the real
and the imaginary parts of A0 in Ref. [43] are shown in Tab. 22.

In addition to utilizing G-parity boundary conditions to address the challenges associ-
ated with extracting excited states for achieving the correct kinematics of K → ππ, the
latest publications, RBC/UKQCD 23A [53] and RBC/UKQCD 23B [55], also investigate al-
ternative approaches for overcoming this issue, namely employing variational methods and
periodic boundary conditions. Two-pion scattering calculations are carried out for the isospin
channels I = 0 and I = 2 on two gauge-field ensembles with physical pion masses and inverse
lattice spacings of 1.023 and 1.378 GeV [55] employing domain-wall fermions. The results
for scattering phase shifts in both I = 0 and I = 2 channels exhibit consistency with the
Roy equation and chiral perturbation theory, although the statistical error for I = 0 remains
relatively large. The computation of K → ππ decay amplitudes and ϵ′ is performed on a
single ensemble with a physical pion mass and an inverse lattice spacing of 1.023 GeV [53].
The value obtained for Re(ϵ′/ϵ) is consistent with that of the previous 2020 calculation, albeit
with 1.7 times larger uncertainty. Results from RBC/UKQCD 23A for the real and imaginary
parts of A0 and A2 are reported in Tabs. 22 and 23, respectively.

As previously discussed, the determination of Im(A0) from Ref. [43] has been used to
obtain the value of the parameter ξ0 in Eq. (106). A first-principles computation of Re(A0)
is essential to address the so-called ∆I = 1/2 puzzle associated to the enhancement of ∆I =
1/2 over ∆I = 3/2 transitions owing, crucially, to long distance effects. Indeed, short-
distance enhancements in the Wilson coefficients are not large enough to explain the ∆I = 1/2
rule [56, 57]. Lattice-QCD calculations do provide a method to study such a long-distance
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Collaboration Ref. Nf ξ0

RBC/UKQCD 23A◦ [53] 2+1 −2.63(37)(68) · 10−4

RBC/UKQCD 20† [43] 2+1 −2.1(5) · 10−4

RBC/UKQCD 15G⋄ [45] 2+1 −0.6(5) · 10−4

RBC/UKQCD 15F∗ [46] 2+1 −1.7(2) · 10−4

◦ Estimate for ξ0 has been provided by RBC/UKQCD (private communication with Masaaki Tomii.)
† Estimate for ξ0 obtained from a direct evaluation of the ratio of amplitudes Im(A0)/Re(A0) where

Im(A0) is determined from the lattice-QCD computation of Ref. [43] while for Re(A0) ≃ |A0| is taken
from the experimental value for |A0|.

⋄ Estimate for ξ0 obtained from a direct evaluation of the ratio of amplitudes Im(A0)/Re(A0) where
Im(A0) is determined from the lattice-QCD computation of Ref. [45] while for Re(A0) ≃ |A0| is taken
from the experimental value for |A0|.

∗ Estimate for ξ0 based on the use of Eq. (104). The new value of Im(A2) reported in Ref. [43]—based
on the lattice-QCD computation of Ref. [46] following an update of a nonlattice input—is used in
combination with the experimental values for Re(A2), Re(ϵ′/ϵ), |ϵK | and ω.

Table 24: Results for the parameter ξ0 = Im(A0)/Re(A0) obtained through the combination
of lattice-QCD determinations of K → ππ decay amplitudes with Nf = 2 + 1 dynamical
flavours and experimental inputs.

enhancement. The combination of the most precise result for A0 in Tab. 22, Ref. [43], with
the earlier lattice calculation of A2 in Ref. [46] leads to the ratio, Re(A0)/Re(A2) = 19.9(5.0),
which agrees with the value Re(A0)/Re(A2) = 22.45(6) that we obtain based solely on PDG
24 [12] experimental input. In Ref. [43], the lattice determination of relative size of direct CP
violation was updated as follows,

Re(ϵ′/ϵ) = 21.7(2.6)(6.2)(5.0)× 10−4, (109)

where the first two errors are statistical and systematic, respectively. The third error arises
from having omitted the strong and electromagnetic isospin breaking effects. The value
of Re(ϵ′/ϵ) in Eq. (109) uses the experimental values of Re(A0) and Re(A2). The lattice
determination of Re(ϵ′/ϵ) is in good agreement with the experimental result in Eq. (105).
However, while the result in Eq. (109) represents a significant step forward, it is important
to keep in mind that the calculation of A0 is currently based on a single value of the lattice
spacing. It is expected that future work with additional values of the lattice spacing will
contribute to improve the precision. For a description of the computation of the ππ scattering
phase shifts entering in the determination of Re(ϵ′/ϵ) in Eq. (109), we refer to Ref. [58].

The complex amplitude A2 has been determined by RBC/UKQCD 15F [46] employing
Nf = 2 + 1 Möbius domain-wall fermions at two values of the lattice spacing, namely a =
0.114 fm and 0.083 fm, and performing simulations at the physical pion mass with MπL ≈ 3.8.

A compilation of lattice results for the real and imaginary parts of the K → ππ decay am-
plitudes, A0 and A2, with Nf = 2+1 flavours of dynamical quarks is shown in Tabs. 22 and 23.
In Appendix C.3.3, we collect the corresponding information about the lattice QCD simula-
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tions, including the values of some of the most relevant parameters.
The determination of the real and imaginary parts of A2 by RBC/UKQCD 15F shown in

Tab. 23 is free of red tags. We therefore quote the following FLAG averages:

Re(A2) = 1.50(0.04)(0.14)× 10−8 GeV,
Nf = 2 + 1 : Ref. [46]. (110)

Im(A2) = −8.34(1.03)× 10−13 GeV,

Results for the parameter ξ0 are presented in Tab. 24. Except for the most recent cal-
culation RBC/UKQCD 23A, which is based on the direct lattice calculation of the relevant
quantities, we note that, for the other reported values of ξ0, the total uncertainty depends on
the specific way in which lattice and experimental inputs are selected.

Besides the RBC/UKQCD collaboration programme [43, 45, 46, 53, 55] using domain-
wall fermions, an approach based on improved Wilson fermions [59, 60] has presented a
determination of the K → ππ decay amplitudes, A0 and A2, at unphysical quark masses.
See Refs. [61–63] for an analysis of the scaling with the number of colours of K → ππ decay
amplitudes using lattice-QCD computations

Proposals aiming at the inclusion of electromagnetism in lattice-QCD calculations of K →
ππ decays are being explored [64–66] in order to reduce the uncertainties associated with
isospin breaking effects.

6.3 Lattice computation of BK

Lattice calculations of BK are affected by the same type of systematic effects discussed in the
various sections of this review. However, the issue of renormalization merits special attention.
The reason is that the multiplicative renormalizability of the relevant operator Q∆S=2 is lost
once the regularized QCD action ceases to be invariant under chiral transformations. As
a result, the renormalization pattern of BK depends on the specific choice of the fermionic
discretization.

In the case of Wilson fermions, Q∆S=2 mixes with four additional dimension-six operators,
which belong to different representations of the chiral group, with mixing coefficients that are
finite functions of the gauge coupling. This complicated renormalization pattern was identified
as the main source of systematic error in earlier, mostly quenched calculations of BK with
Wilson quarks. It can be bypassed via the implementation of specifically designed methods,
which are either based on Ward identities [67] or on a modification of the Wilson quark action,
known as twisted-mass QCD [68–70].

An advantage of staggered fermions is the presence of a remnant U(1) chiral symme-
try. However, at nonvanishing lattice spacing, the symmetry among the extra unphysical
degrees of freedom (tastes) is broken. As a result, mixing with other dimension-six operators
cannot be avoided in the staggered formulation, which complicates the determination of the
B-parameter. In general, taste conserving mixings are implemented directly in the lattice com-
putation of the matrix element. The effects of the broken taste symmetry are usually treated
through an effective field theory, staggered Chiral Perturbation Theory (SχPT) [71, 72], pa-
rameterizing the quark-mass and lattice-spacing dependences.

Fermionic lattice actions based on the Ginsparg-Wilson relation [73] are invariant under
the chiral group, and hence four-quark operators such as Q∆S=2 renormalize multiplicatively.
However, depending on the particular formulation of Ginsparg-Wilson fermions, residual chi-
ral symmetry breaking effects may be present in actual calculations. For instance, in the
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case of domain-wall fermions, the finiteness of the extra 5th dimension implies that the de-
coupling of modes with different chirality is not exact, which produces a residual nonzero
quark mass mres in the chiral limit. The mixing with dimension-six operators of different
chirality is expected to be an O(m2

res) suppressed effect [74, 75] that should be investigated
on a case-by-case basis.

Before describing the results for BK , we would like to reiterate a discussion presented in
previous FLAG reports about an issue related to the computation of the kaon bag parameters
through lattice-QCD simulations with Nf = 2+1+1 dynamical quarks. In practice, this only
concerns the calculations of the kaon B-parameters including dynamical charm-quark effects
in Ref. [76], that were examined in the FLAG 16 report. As described in Sec. 6.1, the effective
Hamiltonian in Eq. (90) depends solely on the operator Q∆S=2 in Eq. (91) —which appears in
the definition of BK in Eq. (98)— at energy scales below the charm threshold where charm-
quark contributions are absent. As a result, a computation of BK based on Nf = 2 + 1 + 1
dynamical simulations will include an extra sea-quark contribution from charm-quark loop
effects for which there is at present no direct evaluation in the literature.

When the matrix element of Q∆S=2 is evaluated in a theory that contains a dynamical
charm quark, the resulting estimate for BK must then be matched to the three-flavour theory
that underlies the effective four-quark interaction.6 In general, the matching of 2 + 1-flavour
QCD with the theory containing 2 + 1 + 1 flavours of sea quarks is performed around the
charm threshold. It is usually accomplished by requiring that the coupling and quark masses
are equal in the two theories at a renormalization scale µ around mc. In addition, BK should
be renormalized and run, in the four-flavour theory, to the value of µ at which the two theories
are matched, as described in Sec. 6.1. The corrections associated with this matching are of
order (E/mc)

2, where E is a typical energy in the process under study, since the subleading
operators have dimension eight [77].

When the kaon-mixing amplitude is considered, the matching also involves the relation
between the relevant box diagrams and the effective four-quark operator. In this case, cor-
rections of order (E/mc)

2 arise not only from the charm quarks in the sea, but also from
the valence sector, since the charm quark propagates in the box diagrams. We note that the
original derivation of the effective four-quark interaction is valid up to corrections of order
(E/mc)

2. The kaon-mixing amplitudes evaluated in the Nf = 2+1 and 2+1+1 theories are
thus subject to corrections of the same order in E/mc as the derivation of the conventional
four-quark interaction.

Regarding perturbative QCD corrections at the scale of the charm-quark mass on the
amplitude in Eq. (94), the uncertainty on η1 and η3 factors is of O(αs(mc)

3) [16, 17], while
that on η2 is of O(αs(mc)

2) [78]. 7 On the other hand, the corrections of order (E/mc)
2 due

to dynamical charm-quark effects in the matching of the amplitudes are further suppressed
by powers of αs(mc) and by a factor of 1/Nc, given that they arise from quark-loop diagrams.
In order to make progress in resolving this so far uncontrolled systematic uncertainty, it is
essential that any future calculation of BK with Nf = 2 + 1 + 1 flavours properly addresses
the size of these residual dynamical charm effects in a quantitative way.

Another issue in this context is how the lattice scale and the physical values of the quark

6We thank Martin Lüscher for an interesting discussion on this issue.
7The results of Ref. [15], based on the use of u-t unitarity for the two corresponding perturbative factors, also

have an uncertainty of O(αs(mc)
2) and O(αs(mc)

3). The estimates for the missing higher-order contributions
are, however, expected to be reduced with respect to the more traditional case where c-t unitarity is used; for
a discussion on the |ϵK | computation in the u-t unitarity, see the relevant discussion in Sec. 6.1.
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masses are determined in the 2 + 1 and 2 + 1 + 1 flavour theories. Here it is important
to consider in which way the quantities used to fix the bare parameters are affected by a
dynamical charm quark.

A recent study [79] using three degenerate light quarks, together with a charm quark,
indicates that the deviations between the Nf = 3 + 1 and the Nf = 3 theories are consider-
ably below the 1% level in dimensionless quantities constructed from ratios of gradient flow
observables, such as t0 and w0, used for scale setting. This study extends the nonperturbative
investigations with two heavy mass-degenerate quarks [80, 81] which indicate that dynami-
cal charm-quark effects in low-energy hadronic observables are considerably smaller than the
expectation from a naive power counting in terms of αs(mc). For an additional discussion
on this point, we refer to Ref. [76]. Given the hierarchy of scales between the charm-quark
mass and that of BK , we expect these errors to be modest. The ETM 15 Nf = 2 + 1 + 1
BK result does not include an estimate of this systematic uncertainty. A more quantitative
understanding will be required as the statistical uncertainties in BK will be reduced. Within
this review we will not discuss this issue further. However, we wish to point out that the
present discussion also applies to Nf = 2+1+1 computations of the kaon BSM B-parameters
discussed in Sec. 6.4.

A compilation of results for BK withNf = 2+1+1, 2+1 and 2 flavours of dynamical quarks
is shown in Tabs. 25 and 26, as well as Fig. 14. An overview of the quality of systematic
error studies is represented by the colour coded entries in Tabs. 25 and 26. The values
of the most relevant lattice parameters and comparative tables on the various estimates of
systematic errors have been collected in the corresponding Appendices of the previous FLAG
editions [82–84].

Since the last FLAG report, one new result for BK appeared in RBC/UKQCD 24 [25]. 8

For the determination of BK , the RBC/UKQCD Collaboration employs domain-wall fermions
at three lattice spacings spanning the range [0.07, 0.11] fm. For the two coarsest lattice
spacings, simulations have been performed at the physical pion mass, whereas for the finest
lattice spacing, a pion mass of about 230 MeV has been used. Residual chiral symmetry
breaking effects induced by the finite extent of the 5th dimension in the domain-wall fermion
formulation have been checked and found to contribute to the systematic uncertainty of the
final estimate of BK at the per-mille level. Finite-volume effects are found to be negligible.
The renormalization constants of the lattice operators are determined nonperturbatively in
two RI-SMOM schemes, namely (/q, /q) and (γµ, γµ), corresponding to two different choices of
renormalization conditions (see Ref. [23]). The final values of the renormalization constants
are obtained from the average over the results of the two schemes. The error from the
(γµ, γµ) scheme is used to quote the uncertainty arising from the lattice computation. The
renormalization constants in the RI-SMOM schemes are computed at the renormalization
scale µ = 2 GeV. A nonperturbative step-scaling procedure is used to run them to µ = 3 GeV
where the results are perturbatively matched to the MS scheme. The continuum and physical
point result for BK is obtained through a combined chiral and continuum extrapolation using
NLO SU(2) chiral perturbation theory. The spread between the result obtained as described
above and the result of a calculation performed directly at µ = 3 GeV is taken as an estimate
of the uncertainty due to discretization effects. The dominant error of the RBC/UKQCD 24

8We also mention the report of an ongoing work [85] related to the calculation of BK in which the relevant
operators are defined in the framework of gradient flow. A small flow time expansion method was applied in
order to compute, to 1-loop approximation, the finite matching coefficients between the gradient flow and the
MS schemes for the operators entering the BK computation.
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computation of BK arises from the perturbative matching of the RI-SMOM schemes used in
the lattice computation to the MS scheme. This is estimated as half the difference of the
results obtained from the use of the two intermediate RI-SMOM schemes in the matching. In
this computation of BK , a green star symbol is assigned to all FLAG quality criteria.

For a detailed description of previous BK calculations we refer the reader to FLAG 16 [83].
We now give the FLAG averages for BK for Nf = 2+1+1, 2+1, and 2 dynamical flavours.

0.70 0.75 0.80 0.85

=
+

+
=

+
=

ETM 10A
ETM 12D
FLAG average for =

Aubin 09
SWME 10
RBC/UKQCD 10B
BMW 11
SWME 11A
Laiho 11
RBC/UKQCD 12A
SWME 13
SWME 13A
SWME 14
RBC/UKQCD 14B
SWME 15A
RBC/UKQCD 16
RBC/UKQCD 24
FLAG average for = +

ETM 15
FLAG average for = + +

Figure 14: Unquenched lattice results for the RGI B-parameter B̂K . The grey bands indicate
our averages described in the text. For Nf = 2+1+1 and Nf = 2 the FLAG averages coincide
with the results by ETM 15 and ETM 12D, respectively.

We begin with the Nf = 2+1 global average, which is estimated by employing five different
BK results, namely BMW 11 [26], Laiho 11 [20], RBC/UKQCD 14B [23], SWME 15A [24], and
RBC/UKQCD 24 [25]. Moreover, we recall that the expression of ϵK in terms of BK is derived
in the three-flavour theory (see Sec. 6.1). Our procedure is: first, we combine in quadrature
the statistical and systematic errors of each individual result of the RGI B parameter B̂K.
A weighted average is then obtained from the set of results. For the final error estimate,
we take correlations between different collaborations into account. Specifically, we consider
the statistical and finite-volume errors of SWME 15A and Laiho 11 to be correlated, since
both groups use the asqtad ensembles generated by the MILC Collaboration. Laiho 11 and
RBC/UKQCD 14B both use domain-wall quarks in the valence sector and employ similar
procedures for the nonperturbative determination of matching factors. Hence, we treat their
quoted renormalization and matching uncertainties as correlated. Moreover, we treat the
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results obtained by RBC/UKQCD 14B and RBC/UKQCD 24 as fully correlated because
part of the sea ensembles in the two calculations are common.9 In the calculation of the
average, we incorporate the new FLAG data-driven criterion (see Sec. 2.1.2) concerning the
extrapolation to the continuum limit which increases by approximately 3.7% the total error
of the RBC/UKQCD 24 calculation. Following Schmelling’s procedure [86] to construct the
global covariance matrix of the results contributing to the average, we arrive at the following
value, B̂K = 0.7533(85). Since the fit implementing the weighted average has χ2/dof =
1.142, according to the general FLAG rule, we stretch the error by the square root of the
reduced χ2 value. This effect is mainly driven by the two most precise determinations of B̂K,
corresponding to RBC/UKQCD 24 and BMW 11, which differ at the 2σ level. This procedure
leads to the following result:

Nf = 2 + 1 : B̂K = 0.7533(91) Refs. [20, 23–26], (111)

After applying the NLO conversion factors B̂K/BMS
K (2GeV) = 1.369 and B̂K/BMS

K (3GeV) =
1.415 10, this becomes

Nf = 2 + 1 : BMS
K (2GeV) = 0.5503(66), BMS

K (3GeV) = 0.5324(64) , Refs. [20, 23–26]. (112)

Improvements in lattice calculations in recent years have led to a considerable reduction
in statistical errors. This has implied that some of the results contributing to the global av-
erage are nowadays statistically incompatible. Only by taking into account the contributions
to systemic uncertainties, both from the lattice calculations themselves and, notably, from
perturbative matching, can it be seen that the weighted average produces a value of O(1) for
the reduced χ2.

There is only a single result for Nf = 2+ 1+ 1, computed by the ETM collaboration [76].
Since it is free of red tags, it qualifies to the following average,

Nf = 2 + 1 + 1 : B̂K = 0.717(18)(16) , Ref. [76]. (113)

Using the same conversion factors as in the three-flavour theory, this value translates into

Nf = 2+1+1 : BMS
K (2GeV) = 0.524(13)(12), BMS

K (3GeV) = 0.507(13)(11), Ref. [76]. (114)

For Nf = 2 flavours the average is based on a single result, that of ETM 12D [87]:

Nf = 2 : B̂K = 0.727(22)(12), Ref. [87] , (115)

which, using the same conversion factors as in the three-flavour theory, translates into

Nf = 2 : BMS
K (2GeV) = 0.531(16)(9), BMS

K (3GeV) = 0.514(16)(8), Ref. [87]. (116)

9However, due to partly different methodology in the analysis and the renormalization procedure the two
computations are considered as separate, and for this reason they are both included in the global average.

10We refer to FLAG 19 [82] for a discussion of the procedure followed in estimating the conversion factors
to MS at 2 GeV. In addition, for the computation of the conversion factor from RGI to the MS scheme at 3
GeV, which is new here, we have used the three-flavour ΛQCD from FLAG 21 and the 4-loop formula for the
β-function of the strong coupling constant. The propagation error owing to the error of ΛQCD is found to be
negligible compared to the total uncertainty of the BK estimate.
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BK(MS, 2GeV) B̂K

ETM 15 [76] 2+1+1 A ⋆ ◦ ◦ ⋆ a 0.524(13)(12) 0.717(18)(16)1

RBC/UKQCD 24 [25] 2+1 A ⋆ ⋆ ⋆ ⋆ b 0.540(2)(20)2 0.7436(25)(78)

RBC/UKQCD 16 [88] 2+1 A ◦ ◦ ◦ ⋆ c 0.543(9)(13)2 0.744(13)(18)3

SWME 15A [24] 2+1 A ⋆ ◦ ⋆ ◦‡ − 0.537(4)(26) 0.735(5)(36)4

RBC/UKQCD 14B [23] 2+1 A ⋆ ⋆ ⋆ ⋆ c 0.5478(18)(110)2 0.7499(24)(150)

SWME 14 [22] 2+1 A ⋆ ◦ ⋆ ◦‡ − 0.5388(34)(266) 0.7379(47)(365)

SWME 13A [89] 2+1 A ⋆ ◦ ⋆ ◦‡ − 0.537(7)(24) 0.735(10)(33)

SWME 13 [90] 2+1 C ⋆ ◦ ⋆ ◦‡ − 0.539(3)(25) 0.738(5)(34)

RBC/UKQCD 12A [21] 2+1 A ◦ ⋆ ◦ ⋆ c 0.554(8)(14)2 0.758(11)(19)

Laiho 11 [20] 2+1 C ⋆ ◦ ◦ ⋆ − 0.5572(28)(150) 0.7628(38)(205)4

SWME 11A [91] 2+1 A ⋆ ◦ ◦ ◦‡ − 0.531(3)(27) 0.727(4)(38)

BMW 11 [26] 2+1 A ⋆ ⋆ ⋆ ⋆ d 0.5644(59)(58) 0.7727(81)(84)

RBC/UKQCD 10B [92] 2+1 A ◦ ◦ ⋆ ⋆ e 0.549(5)(26) 0.749(7)(26)

SWME 10 [93] 2+1 A ⋆ ◦ ◦ ◦ − 0.529(9)(32) 0.724(12)(43)

Aubin 09 [94] 2+1 A ◦ ◦ ◦ ⋆ − 0.527(6)(21) 0.724(8)(29)

‡ The renormalization is performed using perturbation theory at 1-loop, with a conservative estimate of
the uncertainty.

a BK is renormalized nonperturbatively at scales 1/a ∼ 2.2–3.3 GeV in the Nf = 4 RI/MOM scheme
using two different lattice momentum scale intervals, the first around 1/a while the second around
3.5 GeV. The impact of the two ways to the final result is taken into account in the error budget.
Conversion to MS is at 1-loop order at 3 GeV.

b BK is renormalized nonperturbatively at a scale of 2.0 GeV in two RI/SMOM schemes for Nf = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. A direct computation
at 3 GeV is also used to estimate systematic uncertainties related to discretization effects. Conversion
to MS is at 1-loop order at 3 GeV.

c BK is renormalized nonperturbatively at a scale of 1.4 GeV in two RI/SMOM schemes for Nf = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. Conversion to MS is at
1-loop order at 3 GeV.

d BK is renormalized and run nonperturbatively to a scale of 3.5GeV in the RI/MOM scheme. At
the same scale, conversion at 1-loop order to MS is applied. Nonperturbative and NLO perturbative
running agrees down to scales of 1.8GeV within statistical uncertainties of about 2%.

e BK is renormalized nonperturbatively at a scale of 2GeV in two RI/SMOM schemes for Nf = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. Conversion to MS is at
1-loop order at 3 GeV.

1 BK(MS, 2GeV) and B̂K are related using the conversion factor 1.369, i.e., the one obtained with
Nf = 2 + 1.

2 BK(MS, 2GeV) value from a private communication with the authors. The first error is due to lattice
statistical and systematic uncertainties; the second error is associated with the perturbative truncation
uncertainty in matching to MS at a scale of 2 GeV.

3 B̂K is obtained from BK(MS, 3GeV) using the conversion factor employed in Ref. [23].
4 B̂K is obtained from the estimate for BK(MS, 2GeV) using the conversion factor 1.369.

Table 25: Results for the kaon B-parameter in QCD with Nf = 2 + 1 + 1 and Nf = 2 + 1,
together with a summary of systematic errors. Information about nonperturbative running
is indicated in the column “running,” with details given at the bottom of the table.
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BK(MS, 2GeV) B̂K

ETM 12D [87] 2 A ⋆ ◦ ◦ ⋆ f 0.531(16)(9) 0.727(22)(12)1

ETM 10A [95] 2 A ⋆ ◦ ◦ ⋆ g 0.533(18)(12)1 0.729(25)(17)

f BK is renormalized nonperturbatively at scales 1/a ∼ 2–3.7 GeV in the Nf = 2 RI/MOM scheme. In
this scheme, nonperturbative and NLO perturbative running are shown to agree from 4 GeV down to
2 GeV to better than 3% [95, 96].

g BK is renormalized nonperturbatively at scales 1/a ∼ 2–3 GeV in the Nf = 2 RI/MOM scheme. In
this scheme, nonperturbative and NLO perturbative running are shown to agree from 4 GeV down to
2 GeV to better than 3% [95, 96].

1 BK(MS, 2GeV) and B̂K are related using the conversion factor 1.369, i.e., the one obtained with Nf =
2 + 1.

Table 26: Results for the kaon B-parameter in QCD with Nf = 2, together with a summary
of systematic errors. Information about nonperturbative running is indicated in the column
“running,” with details given at the bottom of the table.

6.4 Kaon BSM B-parameters

We now consider the matrix elements of operators that encode the effects of physics beyond
the Standard Model (BSM) to the mixing of neutral kaons. In this theoretical framework,
both the SM and BSM contributions add up to reproduce the experimentally observed value
of ϵK . As long as BSM contributions involve heavy particles with masses much larger than
ΛQCD, they will be short-distance dominated. The effective Hamiltonian for generic ∆S = 2
processes including BSM contributions reads

H∆S=2
eff,BSM =

5∑
i=1

Ci(µ)Qi(µ), (117)

where Q1 is the four-quark operator of Eq. (91) that gives rise to the SM contribution to
ϵK . In the so-called SUSY basis introduced by Gabbiani et al. [97], the operators Q2, . . . , Q5

are 11

Q2 =
(
s̄a(1− γ5)d

a
)(
s̄b(1− γ5)d

b
)
,

Q3 =
(
s̄a(1− γ5)d

b
)(
s̄b(1− γ5)d

a
)
,

Q4 =
(
s̄a(1− γ5)d

a
)(
s̄b(1 + γ5)d

b
)
,

Q5 =
(
s̄a(1− γ5)d

b
)(
s̄b(1 + γ5)d

a
)
, (118)

11Thanks to QCD parity invariance lattice computations for three more dimension-six operators, whose
parity conserving parts coincide with the corresponding parity conserving contributions of the operators Q1, Q2

and Q3, can be ignored.
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where a and b are colour indices. In analogy to the case of BK , one then defines the B-
parameters of Q2, . . . , Q5 according to

Bi(µ) =

〈
K̄0 |Qi(µ)|K0

〉
Ni

〈
K̄0 |s̄γ5d| 0

〉
⟨0 |s̄γ5d|K0⟩

, i = 2, . . . , 5. (119)

The factors {N2, . . . , N5} are given by {−5/3, 1/3, 2, 2/3}, and it is understood that Bi(µ)
is specified in some renormalization scheme, such as MS or a variant of the regularization-
independent momentum subtraction (RI-MOM) scheme.

The SUSY basis has been adopted in Refs. [25, 76, 87, 88, 98]. Alternatively, one can
employ the chiral basis of Buras, Misiak and Urban [99]. The SWME collaboration prefers
the latter since the anomalous dimension that enters the RG running has been calculated to
2-loop order in perturbation theory [99]. Results obtained in the chiral basis can be easily
converted to the SUSY basis via

BSUSY
3 = 1

2

(
5Bchiral

2 − 3Bchiral
3

)
. (120)

The remaining B-parameters are the same in both bases. In the following, we adopt the
SUSY basis and drop the superscript.

Older quenched results for the BSM B-parameters can be found in Refs. [100–102]. For a
nonlattice approach to get estimates for the BSM B-parameters see Ref. [103].

Estimates for B2, . . . , B5 have been reported for QCD with Nf = 2 (ETM 12D [87]),
Nf = 2 + 1 (RBC/UKQCD 12E [98], SWME 13A [89], SWME 14C [104], SWME 15A [24],
RBC/UKQCD 16 [88, 105], RBC/UKQCD 24 [25]) and Nf = 2+1+1 (ETM 15 [76]) flavours
of dynamical quarks. Since the publication of FLAG 19 [82] a single new work Ref. [25]
has appeared. The basic characteristics of this calculation have been reported in the BK

section, see Sec. 6.3. As in the case of BK , the dominant error for all the BSM B-parameters
arises from the systematic uncertainty associated to the truncation error in the perturbative
matching from the intermediate schemes to the MS scheme. This is estimated as half the
difference of the results obtained from the matching to MS of the two intermediate schemes.
The ratio of the BSM to SM matrix elements are also reported in Ref. [25].

All the available results are listed and compared in Tab. 27 and Fig. 15. In general, one
finds that the BSM B-parameters computed by different collaborations do not show the same
level of consistency as the SM kaon-mixing parameter BK discussed previously. Control over
the systematic uncertainties from chiral and continuum extrapolations as well as finite-volume
effects in B2, . . . , B5 is expected to be at a comparable level as that for BK , as far as the
results by ETM 12D, ETM 15, SWME 15A and RBC/UKQCD 16 are concerned, since the
set of gauge ensembles employed in both kinds of computations is the same. However, the
most recent results by RBC/UKQCD 24 with Nf = 2 + 1 flavours are, in general, much
more precise than the older ones. Notice that the calculation by RBC/UKQCD 12E has been
performed at a single value of the lattice spacing and a minimum pion mass of 290MeV.

As reported in RBC/UKQCD 16 [88] and RBC/UKQCD 24 [25], the comparison of results
obtained in the conventional RI-MOM and in two RI-SMOM schemes shows significant dis-
crepancies for some of the BSM B-parameters. Tensions are observed for the cases of B4 and
B5, where the discrepancies between results obtained with RI-MOM and RI-SMOM are at the
level of 2.6 σ and 4.5 σ, respectively. The results of RBC/UKQCD 16 and RBC/UKQCD 24
lie closer to those of SWME 15A which rely on perturbative renormalization at 1-loop or-
der. On the other hand, the results for B2 and B3 obtained by ETM 15, SWME 15A,
RBC/UKQCD 16 and RBC/UKQCD 24 show a better level of compatibility.
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The findings by RBC/UKQCD 16 [88], RBC/UKQCD 17A [105] and RBC/UKQCD 24
[25] highlight the importance of carefully assessing the systematic effects on the implementa-
tion of the Rome-Southampton method used for nonperturbative renormalization. In particu-
lar, the RI-MOM and RI-SMOM schemes differ in that the use of nonexceptional kinematics,
in the RI-SMOM scheme, removes the need to subtract the pseudo-Goldstone boson pole
contamination, as is required in the RI-MOM case. In addition, for each of the schemes a
specific analysis of the truncaction error in the perturbative matching to MS must be carried
out.
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B2 B3 B4 B5

ETM 15 [76] 2+1+1 A ⋆ ◦ ◦ ⋆ a 0.46(1)(3) 0.79(2)(5) 0.78(2)(4) 0.49(3)(3)

RBC/UKQCD 24 [25] 2+1 A ⋆ ⋆ ⋆ ⋆ b 0.4794(25)(35) 0.746(13)(17) 0.897(02)(10) 0.6882(78)(94)

RBC/UKQCD 16 [88] 2+1 A ◦ ◦ ◦ ⋆ b 0.488(7)(17) 0.743(14)(65) 0.920(12)(16) 0.707(8)(44)

SWME 15A [24] 2+1 A ⋆ ◦ ⋆ ◦† − 0.525(1)(23) 0.773(6)(35) 0.981(3)(62) 0.751(7)(68)

SWME 14C [104] 2+1 C ⋆ ◦ ⋆ ◦† − 0.525(1)(23) 0.774(6)(64) 0.981(3)(61) 0.748(9)(79)

SWME 13A‡ [89] 2+1 A ⋆ ◦ ⋆ ◦† − 0.549(3)(28) 0.790(30) 1.033(6)(46) 0.855(6)(43)

RBC/ [98] 2+1 A ■ ◦ ⋆ ⋆ b 0.43(1)(5) 0.75(2)(9) 0.69(1)(7) 0.47(1)(6)
UKQCD 12E

ETM 12D [87] 2 A ⋆ ◦ ◦ ⋆ c 0.47(2)(1) 0.78(4)(2) 0.76(2)(2) 0.58(2)(2)

† The renormalization is performed using perturbation theory at 1-loop order, with a conservative
estimate of the uncertainty.

a Bi are renormalized nonperturbatively at scales 1/a ∼ 2.2–3.3 GeV in the Nf = 4 RI/MOM scheme
using two different lattice momentum scale intervals, with values around 1/a for the first and around
3.5 GeV for the second one. The impact of these two ways to the final result is taken into account in
the error budget. Conversion to MS is at 1-loop order at 3 GeV.

b The B-parameters are renormalized nonperturbatively at a scale of 3 GeV.

c Bi are renormalized nonperturbatively at scales 1/a ∼ 2–3.7 GeV in the Nf = 2 RI/MOM scheme
using two different lattice momentum scale intervals, with values around 1/a for the first and around
3 GeV for the second one.

‡ The computation of B4 and B5 has been revised in Refs. [24] and [104].

Table 27: Results for the BSM B-parameters B2, . . . , B5 in the MS scheme at a reference scale
of 3GeV. Information about nonperturbative running is indicated in the column “running,”
with details given at the bottom of the table.

19

http://arxiv.org/abs/2411.04268


Y. Aoki et al. FLAG Review 2024 2411.04268

A nonperturbative computation of the running of the four-fermion operators contributing
to the B2, . . . , B5 parameters has been carried out with two dynamical flavours using the
Schrödinger functional renormalization scheme [28]. Renormalization matrices of the operator
basis are used to build step-scaling functions governing the continuum-limit running between
hadronic and electroweak scales. A comparison to perturbative results using NLO (2-loop
order) for the four-fermion operator anomalous dimensions indicates that, at scales of about
3GeV, nonperturbative effects can induce a sizeable contribution to the running. Similar
conclusions are obtained on the basis of preliminary results for the renormalization-group
running of the complete basis of ∆F = 2 four-fermion operators using Nf = 3 dynamical
massless flavours in the Schrödinger setup [29].

A closer look at the calculations reported in ETM 15 [76], SWME 15A [24], RBC/UKQCD 16
[88], and RBC/UKQCD 24 [25] reveals that cutoff effects tend to be larger for the BSM B-
parameters compared to those of BK . In order to take into account this effect in the average
analysis, we make use of the new FLAG data-driven criterion (see Sec. 2.1.2) concerning the
extrapolation to the continuum limit. In summary, we report that in the average procedure,
(a) for B2 the total errors by RBC/UKQCD 24 and RBC/UKQCD 16 have been inflated by a
factor 2.6 and by 22%, respectively; (b) for B3 the total errors by ETM 15, RBC/UKQCD 16
and RBC/UKQCD 24 have been inflated by 11%, 45% and 52%, respectively; (c) for B4 no er-
ror inflation is required; and (d) for B5 the total errors by SWME 15A and RBC/UKQCD 16
have been inflated by 3% and 24%, respectively.

Finally we present our estimates for the BSM B-parameters, quoted in the MS-scheme at
scale 3GeV. ForNf = 2+1 our estimate is given by the average of the results from SWME 15A,
RBC/UKQCD 16, and RBC/UKQCD 24. In our analysis, the results in RBC/UKQCD 16
and RBC/UKQCD 24, though obtained through partially different analyses, are considered
as fully correlated because some gauge ensembles are common in the two computations. We
find B2 = 0.488(12) (χ2/dof = 1.58); B3 = 0.757(27) (χ2/dof = 0.17); B4 = 0.903(12)
(χ2/dof = 1.36); B5 = 0.691(14) (χ2/dof = 0.43). Following the FLAG rule, for cases that
have a value of the reduced χ2 greater than unity, we use the square root of the latter to
stretch the respective error. Hence our averages are

Nf = 2 + 1 : (121)

B2 = 0.488(15), B3 = 0.757(27), B4 = 0.903(14), B5 = 0.691(14), Refs. [24, 25, 88].

For Nf = 2+1+1 and Nf = 2, our estimates coincide—with one exception—with the ones by
ETM 15 and ETM 12D, respectively, since there is only one computation for each case. Only
for the case of B3 with Nf = 2 + 1 + 1, owing to the application of the δ(amin) criterion the
error of the average estimate is inflated by about 11% with respect to the ETM 15 reported
value. Thus we quote

Nf = 2 + 1 + 1 : (122)

B2 = 0.46(1)(3), B3 = 0.79(6), B4 = 0.78(2)(4), B5 = 0.49(3)(3), Ref. [76],

Nf = 2 : (123)

B2 = 0.47(2)(1), B3 = 0.78(4)(2), B4 = 0.76(2)(2), B5 = 0.58(2)(2), Ref. [87].

Based on the above discussion about the effects of employing different intermediate momen-
tum subtraction schemes in the nonperturbative renormalization of the operators, there is
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evidence that the discrepancy in the B4 and B5 results between Nf = 2, 2 + 1 + 1, and
Nf = 2 + 1 calculations should not be directly attributed to an effect of the number of dy-
namical flavours. To clarify the present situation, it would be important to perform a direct
comparison of results by the ETM collaboration obtained both with RI-MOM and RI-SMOM
methods. A calculation based an on a different nonperturbative renormalization scheme, such
as the Schrödinger functional, would provide valuable information to shed light on the current
situation.

In closing, we encourage authors to provide the correlation matrix of the Bi parameters—
as done in Ref. [25]—since this information is required in phenomenological studies of New
Physics scenarios.
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Figure 15: Results for the BSM B-parameters defined in the MS scheme at a reference scale
of 3GeV (see Tab. 27).
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large Nc, Phys. Rev. D94 (2016) 114511 [1607.03262].

[62] A. Donini, P. Hernández, C. Pena and F. Romero-López, Dissecting the ∆I = 1/2 rule
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