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A large number of experiments testing the Standard Model (SM) and searching for physics
Beyond the Standard Model (BSM) involve either free nucleons (proton and neutron beams) or
the scattering of electrons, muons, neutrinos and dark matter off nuclear targets. Necessary
ingredients in the analysis of the experimental results are the matrix elements of various
probes (fundamental currents or operators in a low-energy effective theory) between nucleon or
nuclear states. The goal of lattice-QCD calculations in this context is to provide high-precision
predictions of these matrix elements, the simplest of which give the nucleon charges and
form factors. Determinations of the charges, the first Mellin moments of parton distribution
functions, are the most mature and in this review we update results for twelve quantities,
the isovector and flavour-diagonal axial vector, scalar and tensor charges, given in the two
previous FLAG reports in 2019 and 2021 [1, 2]. In this edition in Sec. 10.5, we also add a
review of the second Mellin moments for the vector, axial and tensor currents that give the
momentum fraction, the helicity moment and the transversity moment as a sufficient number
of calculations have been performed and the results are considered robust.

Other quantities that are not being reviewed but for which significant progress has been
made in the last five years are the nucleon axial vector and electromagnetic form factors [3–
17] and parton distribution functions from matrix elements of nonlocal operators [18–22].
The more challenging calculations of nuclear matrix elements that are needed, for example,
to calculate the cross-sections of neutrinos or dark matter scattering off nuclear targets, are
proceeding along three paths. The first is based on direct evaluations of matrix elements
calculated with initial and final states consisting of multiple nucleons [23, 24]. The second
proceeds by matching few-nucleon observables computed in lattice QCD to nuclear effective
field theories and extrapolating in the mass number A, while the third strategy uses the
HAL QCD method [25] or the direct method [26] to extract nuclear forces and currents
from lattice calculations as input for ab initio many-body methods. We expect future FLAG
reviews to include results on these quantities once a sufficient level of control over all the
systematics is reached.

10.1 Isovector and flavour-diagonal charges of the nucleon

The simplest nucleon matrix elements are composed of local quark-bilinear operators, qiΓαqj ,
where Γα can be any of the sixteen Dirac matrices. In this report, we consider two types of
flavour structures: (a) when i = u and j = d. These uΓαd operators arise in W± mediated
weak interactions such as in neutron or pion decay. We restrict the discussion to the matrix
elements of the axial-vector (A), scalar (S) and tensor (T ) currents, which give the isovec-
tor charges, gu−d

A,S,T .
1 (b) When i = j for j ∈ {u, d, s}, there is no change of flavour, e.g.,

in processes mediated via the electromagnetic or weak neutral interaction or dark matter.
These γ or Z0 or possible dark matter mediated processes couple to all flavours with their
corresponding charges. Since these probes interact with nucleons within nuclear targets, one
has to include the effects of QCD (to go from the couplings defined at the quark and gluon

1In the isospin-symmetric limit ⟨p|ūΓd|n⟩ = ⟨p|ūΓu − d̄Γd|p⟩ = ⟨n|d̄Γd − ūΓu|n⟩ for nucleon and proton
states |p⟩ and |n⟩, respectively. The latter two (equivalent) isovector matrix elements are computed on the
lattice.
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level to those for nucleons) and nuclear forces in order to make contact with experiments.
The isovector and flavour-diagonal charges, given by the matrix elements of the correspond-
ing operators calculated between nucleon states, are these nucleon level couplings. Here we
review results for the light and strange flavours, guA,S,T , g

d
A,S,T , and gsA,S,T and the isovector

charges gu−d
A,S,T .

The isovector and flavour-diagonal operators also arise in BSM theories due to the ex-
change of novel force carriers or as effective interactions due to loop effects. The associated
couplings are defined at the energy scale ΛBSM, while lattice-QCD calculations of matrix
elements are carried out at a hadronic scale, µ, of a few GeV. The tool for connecting the
couplings at the two scales is the renormalization group. Since the operators of interest are
composed of quark fields (and more generally also of gluon fields), the predominant change
in the corresponding couplings under a scale transformation is due to QCD. To define the
operators and their couplings at the hadronic scale µ, one constructs renormalized operators,
whose matrix elements are finite in the continuum limit. This requires calculating both mul-
tiplicative renormalization factors, including the anomalous dimensions and finite terms, and
the mixing with other operators. We discuss the details of the renormalization factors needed
for each of the six operators reviewed in this report in Sec. 10.1.3.

Once renormalized operators are defined, the nucleon matrix elements of interest are ex-
tracted using expectation values of two-point and three-point correlation functions illustrated
in Fig. 41, where the latter can have both quark-line connected and disconnected contribu-
tions. In order to isolate the ground-state matrix element, these correlation functions are
analyzed using their spectral decomposition. The current practice is to fit the n-point corre-
lation functions (or ratios involving three- and two-point functions) including contributions
from one or two excited states. In some cases, such as axial and vector operators, Ward
identities provide relations between correlation functions, or ground-state matrix elements,
or facilitate the calculation of renormalization factors. It is important to ensure that all such
Ward identities are satisfied in lattice calculations, especially as in the case of axial form
factors where they provide checks of whether excited-state contamination has been removed
in obtaining matrix elements within ground-state nucleons [14, 27, 28].

The ideal situation occurs if the time separation τ between the nucleon source and sink
positions, and the distance of the operator-insertion time from the source and the sink, t
and τ − t, respectively, are large enough such that the contribution of all excited states is
negligible. In the limit of large τ , the ratio of noise to signal in the nucleon two- and three-
point correlation functions grows exponentially as e(MN− 3

2
Mπ)τ [29, 30], where MN and Mπ

are the masses of the nucleon and the pion, respectively. Therefore, in particular at small pion
masses, maintaining reasonable errors for large τ is challenging, with most current calculations
limited to τ ≲ 1.5 fm. In addition, the mass gap between the ground and excited (including
multi-particle) states is smaller than in the meson sector and at these separations, excited-
state effects can be significant. The approach commonly taken is to first obtain results with
high statistics at multiple values of τ , using the methods described in Sec. 10.1.1. Then,
as mentioned above, excited-state contamination is removed by fitting the data using a fit
form involving one or two excited states. The different strategies that have been employed to
minimize excited-state contamination are discussed in Sec. 10.1.2.

Usually, the quark-connected part of the three-point function (corresponding to the plot
in the centre of Fig. 41) is computed via the so-called “sequential propagator method”, which
uses the product of two quark propagators between the positions of the initial and the final
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Figure 41: The two- and three-point correlation functions (illustrated by Feynman diagrams)
that need to be calculated to extract the ground-state nucleon matrix elements. (Left) the
nucleon two-point function. (Middle) the connected three-point function with source-sink
separation τ and operator-insertion time slice t. (Right) the quark-disconnected three-point
function with operator insertion at t.

nucleons as a source term for another inversion of the lattice Dirac operator. This implies
that the position of the sink timeslice is fixed at some chosen value. Varying the value of the
source-sink separation τ then requires the calculation of another sequential propagator.

The evaluation of quark-disconnected contributions is computationally more challenging
as the disconnected loop (which contains the operator insertion, as illustrated in Fig. 41
right) is needed at all points on a particular timeslice or, in general, over the whole lattice.
The quark loop is computed stochastically and then correlated with the nucleon two-point
function before averaging this three-point function over the ensemble of gauge configurations.
The associated statistical error, therefore, is a combination of that due to the stochastic eval-
uation (on each configuration) and that from the gauge average. The number of stochastic
sources employed on each configuration is, typically, optimized to reduce the overall error for
a given computational cost. The statistical errors of the connected contributions, in contrast,
usually come only from the ensemble average since they are often evaluated exactly on each
configuration, for a small number of source positions. If these positions are well-separated in
space and time, then each measurement is statistically independent. The methodology applied
for these calculations and the variance reduction techniques are summarized in Sec. 10.1.1. By
construction, arbitrary values of τ across the entire temporal extent of the lattice can be re-
alized when computing the quark-disconnected contribution, since the source-sink separation
is determined by the part of the diagram that corresponds to the two-point nucleon corre-
lator. However, in practice, statistical fluctuations of both the connected and disconnected
contributions increase sharply, so that the signal is lost in the statistical noise for τ ≳ 1.5 fm.

The lattice calculation is performed for a given number of quark flavours and at a number
of values of the lattice spacing a, the pion mass Mπ, and the lattice size, represented by MπL.
The results need to be extrapolated to the physical point defined by a = 0, Mπ = 135 MeV
and MπL→∞. This is done by fitting the data simultaneously in these three variables using
a theoretically motivated ansatz. The ansätze used and the fitting strategy are described in
Sec. 10.1.4.

The procedure for rating the various calculations and the criteria specific to this chapter
are discussed in Sec. 10.2, which also includes a brief description of how the final averages
are constructed. The physics motivation for computing the isovector charges, gu−d

A,S,T , and the
review of the lattice results are presented in Sec. 10.3. This is followed by a discussion of the
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relevance of the flavour-diagonal charges, gu,d,sA,S,T , and a presentation of the lattice results in
Sec. 10.4.

10.1.1 Technical aspects of the calculations of nucleon matrix elements

The calculation of n-point functions needed to extract nucleon matrix elements requires mak-
ing four essential choices. The first involves choosing between the suite of background gauge
field ensembles one has access to. The range of lattice parameters should be large enough
to facilitate the extrapolation to the continuum and infinite-volume limits, and, ideally, the
evaluation at the physical pion mass taken to be Mπ = 135 MeV. Such ensembles have been
generated with a variety of discretization schemes for the gauge and fermion actions that have
different levels of improvement and preservation of continuum symmetries. The actions em-
ployed at present include (i) Wilson gauge with nonperturbatively improved Sheikholeslami-
Wohlert fermions (nonperturbatively improved clover fermions) [31–37], (ii) Iwasaki gauge
with nonperturbatively improved clover fermions [11, 38], (iii) Iwasaki gauge with twisted-
mass fermions with a clover term [39–43], (iv) tadpole Symanzik improved gauge with highly
improved staggered quarks (HISQ) [44–52], (v) Iwasaki gauge with domain-wall fermions
(DW) [27, 53–58] and (vi) Iwasaki gauge with overlap fermions [59–61]. For details of the
lattice actions, see the glossary in the Appendix A.1 of FLAG 19 [2].

The second choice is of the valence-quark action. Here there are two choices, to maintain
a unitary formulation by choosing exactly the same action as is used in the generation of
gauge configurations or to choose a different action and tune the quark masses to match
the pseudoscalar meson spectrum in the two theories. Such mixed-action formulations are
nonunitary but are expected to have the same continuum limit as QCD. The reason for
choosing a mixed-action approach is expediency. For example, the generation of 2+1+1
flavour HISQ and 2+1 flavour DW ensembles with physical quark masses has been possible
even at the coarse lattice spacing of a = 0.15 fm and there are indications that cut-off effects
are reasonably small. These ensembles have been analyzed using clover-improved Wilson
fermions, DW and overlap fermions since the construction of baryon correlation functions
with definite spin and parity is much simpler compared to staggered fermions.

The third choice is the combination of the algorithm for inverting the Dirac matrix
and variance reduction techniques. Efficient inversion and variance reduction techniques
are needed for the calculation of nucleon correlation functions with high precision because
the signal-to-noise ratio degrades exponentially as e(

3
2
Mπ−MN )τ with the source-sink separa-

tion τ . Thus, the number of measurements needed for high precision is much larger than in
the meson sector. Commonly used inversion algorithms include the multigrid [62] and the
deflation-accelerated Krylov solvers [63], which can handle linear systems with large condition
numbers very efficiently, thereby enabling calculations of correlation functions at the physical
pion mass.

The sampling of the path integral is limited by the number Nconf of gauge configura-
tions generated. One requires sufficiently large Nconf such that the phase space (for example,
different topological sectors) has been adequately sampled and all the correlation functions
satisfy the expected lattice symmetries such as C, P , T , momentum and translation invari-
ance. Thus, one needs gauge field generation algorithms that give decorrelated large-volume
configurations cost-effectively. On such large lattices, to reduce errors one can exploit the
fact that the volume is large enough to allow multiple measurements of nucleon correlation
functions that are essentially statistically independent. Two other common variance reduc-
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tion techniques that reduce the cost of multiple measurements on each configuration are:
the truncated solver with bias correction method [64] and deflation of the Dirac matrix for
the low-lying modes followed by sloppy solution with bias correction for the residual matrix
consisting predominately of the high-frequency modes [64, 65].

A number of other variance reduction methods are also being used and developed. These
include deflation with hierarchical probing for disconnected diagrams [66, 67], the coherent
source sequential propagator method [68, 69], low-mode averaging [70, 71], the hopping-
parameter expansion [72, 73] and partitioning [74] (also known as dilution [75]).

The final choice is of the interpolating operator used to create and annihilate the nucleon
state, and of the operator used to calculate the matrix element. Along with the choice of
the interpolating operator (or operators if a variational method is used) one also chooses
a “smearing” of the source used to construct the quark propagator. By tuning the width
of the smearing, one can optimize the spatial extent of the nucleon interpolating operator
to reduce the overlap with the excited states. Two common smearing algorithms that are
equally performant are Gaussian (Wuppertal) [76] and Jacobi [77] smearing. Specific smearing
techniques for hadrons boosted to (large) nonzero momentum have also been designed [78–80].

Having made all the above choices, for which a reasonable recipe exists, one calculates a
statistical sample of correlation functions from which the desired ground-state nucleon matrix
element is extracted. Excited states, unfortunately, contribute significantly to nucleon corre-
lation functions in present studies. To remove their contributions, calculations are performed
with multiple source-sink separations τ and fits are made to the correlation functions using
their spectral decomposition as discussed in the next section.

10.1.2 Controlling excited-state contamination

Nucleon matrix elements are determined from a combination of two- and three-point corre-
lation functions. To be more specific, let Bα(x⃗, t) denote an interpolating operator for the
nucleon. Placing the initial state at time slice t = 0, the two-point correlation function of a
nucleon with momentum p⃗ reads

C2(p⃗; τ) =
∑
x⃗,y⃗

eip⃗·(x⃗−y⃗) Pβα

〈
Bα(x⃗, τ)B

β
(y⃗, 0)

〉
, (407)

where the projector P selects the polarization, and α, β denote Dirac indices. The three-point
function of two nucleons and a quark-bilinear operator OΓ is defined as

CΓ
3 (q⃗; t, τ) =

∑
x⃗,y⃗,z⃗

eip⃗
′·(x⃗−z⃗) e−ip⃗·(y⃗−z⃗) Pβα

〈
Bα(x⃗, τ)OΓ(z⃗, t)B

β
(y⃗, 0)

〉
, (408)

where p⃗, p⃗ ′ denote the momenta of the nucleons at the source and sink, respectively, and
q⃗ ≡ p⃗ ′ − p⃗ is the momentum transfer. The bilinear operator is inserted at time slice t, and
τ denotes the source-sink separation. The corresponding quark-line diagrams for both C2

and CΓ
3 , in terms of the nonperturbative quark propagators, D−1(y, x) where D denotes the

lattice Dirac operator, are shown in Fig. 41.
The framework for the analysis of excited-state contamination is based on spectral decom-

position. After inserting complete sets of eigenstates of the transfer matrix, the expressions
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for the correlators C2 and CΓ
3 read

C2(p⃗; τ) =
1

L3

∑
n

Pβα ⟨Ω|Bα|n⟩⟨n|Bβ|Ω⟩ e−Enτ , (409)

CΓ
3 (q⃗; t, τ) =

1

L3

∑
n,m

Pβα ⟨Ω|Bα|n⟩ ⟨n|OΓ|m⟩ ⟨m|B
β|Ω⟩ e−En(τ−t) e−Emt, (410)

where |Ω⟩ denotes the vacuum state, and En represents the energy of the nth eigenstate |n⟩
in the nucleon channel. Here we restrict the discussion to vanishing momentum transfer, i.e.,
the forward limit q⃗ = 0, and label the ground state by n = 0. The matrix element of interest
gΓ ≡ ⟨0|OΓ|0⟩ can, for instance, be obtained from the asymptotic behaviour of the ratio

RΓ(t, τ) ≡
CΓ
3 (q⃗ = 0; t, τ)

C2(p⃗ = 0; τ)

t,(τ−t)→∞−→ gΓ +O(e−∆t, e−∆(τ−t), e−∆τ ), (411)

where ∆ ≡ E1−E0 denotes the energy gap between the ground state and the first excitation.
We also assume that the bilinear operator OΓ is appropriately renormalized (see Sec. 10.1.3).

Excited states with the same quantum numbers as the nucleon include resonances such
as a Roper-like state with a mass of about 1.5GeV, or multi-particle states consisting of a
nucleon and one or more pions [81, 82]. The latter can provide significant contributions to
the two- and three-point correlators in Eqs. (407) and (408) or their ratios (411) as the pion
mass approaches its physical value. Ignoring the interactions between the individual hadrons,
one can easily identify the lowest-lying multi-particle states: they include the Nππ state
with all three particles at rest at ∼ 1.2GeV, as well as Nπ states with both hadrons having
nonzero and opposite momentum. Depending on the spatial box size L in physical units
(with the smallest nonzero momentum equal to 2π/L), there may be a dense spectrum of Nπ
states before the first nucleon resonance is encountered. Corrections to nucleon correlation
functions due to the pion continuum have been studied using chiral effective theory [81–84]
and Lüscher’s finite-volume quantization condition [85].

The well-known noise problem of baryonic correlation functions implies that the long-
distance regime, t, (τ − t)→∞, where the correlators are dominated by the ground state, is
difficult to reach. Current lattice calculations of baryonic three-point functions are typically
confined to source-sink separations of τ ≲ 1.5 fm, despite the availability of efficient noise
reduction methods. In view of the dense excitation spectrum encountered in the nucleon
channel, one has to demonstrate that the contributions from excited states are sufficiently
suppressed to guarantee an unbiased determination of nucleon matrix elements. There are
several strategies to address this problem:

• Multi-state fits to correlator ratios or individual two- and three-point functions;

• Three-point correlation functions summed over the operator-insertion time t;

• Increasing the projection of the interpolator Bα onto the ground state.

The first of the above methods includes excited state contributions explicitly when fitting
to the spectral decomposition of the correlation functions, Eqs. (409, 410) or, alternatively,
their ratio (see Eq. (411)). In its simplest form, the resulting expression for RΓ includes the
contributions from the first excited state, i.e.,

RΓ(t, τ) = gΓ + c01 e
−∆t + c10 e

−∆(τ−t) + c11 e
−∆τ + . . . , (412)
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where c01, c10, c11 and ∆ are treated as additional parameters when fitting RΓ(t, τ) simulta-
neously over intervals in the source-sink separation τ and the operator-insertion timeslice t.
Multi-exponential fits become more difficult to stabilize for a growing number of excited states,
since an increasing number of free parameters must be sufficiently constrained by the data.
Therefore, a high level of comparable statistical precision over several source-sink separations
is required. One common way to address this issue is to introduce Bayesian constraints, as
described in [86]. Alternatively, one may try to reduce the number of free parameters, for
instance, by determining the energy gap ∆ from nucleon two-point function and/or using a
common gap for several different nucleon matrix elements [87].

Ignoring the explicit contributions from excited states and fitting RΓ(t, τ) to a constant
in t for fixed τ amounts to applying what is called the “plateau method”. The name derives
from the ideal situation that sufficiently large source-sink separations τ can be realized, which
would cause RΓ(t, τ) to exhibit a plateau in t independent of τ . The ability to control excited-
state contamination is rather limited in this approach, since the only option is to check for
consistency in the estimate of the plateau as τ is varied. In view of the exponential degradation
of the statistical signal for increasing τ , such stability checks are difficult to perform reliably.

Summed operator insertions, originally proposed in Ref. [88], have also emerged as a widely
used method to address the problem of excited-state contamination. One way to implement
this method [89, 90] proceeds by summing RΓ(t, τ) over the insertion time t, resulting in the
correlator ratio SΓ(τ),

SΓ(τ) ≡
τ−a∑
t=a

RΓ(t, τ). (413)

The asymptotic behaviour of SΓ(τ), including sub-leading terms, for large source-sink sepa-
rations τ can be easily derived from the spectral decomposition of the correlators and is given
by [91]

SΓ(τ)
τ≫1/∆−→ KΓ + (τ − a) gΓ + (τ − a) e−∆τdΓ + e−∆τfΓ + . . . , (414)

whereKΓ is a constant, and the coefficients dΓ and fΓ contain linear combinations of transition
matrix elements involving the ground and first excited states. Thus, the matrix element of
interest gΓ is obtained from the linear slope of SΓ(τ) with respect to the source-sink separation
τ . While the leading corrections from excited states e−∆τ are smaller than those of the original
ratio RΓ(t, τ) (see Eq. (411)), extracting the slope from a linear fit to SΓ(τ) typically results
in relatively large statistical errors. In principle, one could include the contributions from
excited states explicitly in the expression for SΓ(τ). However, in practice it is often difficult
to constrain an enlarged set of parameters reliably, in particular if one cannot afford to
determine SΓ(τ) except for a handful of source-sink separations.

The original summed operator-insertion technique described in Refs. [76, 88, 92, 93] avoids
the explicit summation over the operator-insertion time t at every fixed value of τ . Instead,
one replaces one of the quark propagators that appear in the representation of the two-point
correlation function C2(t) by a “sequential” propagator, according to

D−1(y, x)→ D−1
Γ (y, x) =

∑
z

D−1(y, z)ΓD−1(z, x). (415)

In this expression, the position z ≡ (z⃗, t) of the insertion of the quark-bilinear operator
is implicitly summed over, by inverting the lattice Dirac operator D on the source field
ΓD−1(z, x). While this gives access to all source-sink separations 0 ≤ τ ≤ T , where T is the
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temporal extent of the lattice, the resulting correlator also contains contact terms, as well
as contributions from τ < t < T that must be controlled. This method has been adopted
recently by the CalLat collaboration in their calculation of the isovector axial charge [48, 52].2

As in the case of explicitly summing over the operator-insertion time, the matrix element
of interest is determined from the slope of the summed correlator. For instance, in Ref. [52],
the axial charge was determined from the summed three-point correlation function, by fitting
to its asymptotic behaviour [94] including sub-leading terms.

In practice, one often uses several methods simultaneously, e.g., multi-state fits and the
summation method based on Eq. (414), in order to check the robustness of the result. All of
the approaches for controlling excited-state contributions proceed by fitting data obtained in
a finite interval in τ to a function that describes the approach to the asymptotic behaviour
derived from the spectral decomposition. Obviously, the accessible values of τ must be large
enough so that the model function provides a good representation of the data that enter such
a fit. It is then reasonable to impose a lower threshold on τ above which the fit model is
deemed reliable. We will return to this issue when explaining our quality criteria in Sec. 10.2.

The third method for controlling excited-state contamination aims at optimizing the pro-
jection onto the ground state in the two-point and three-point correlation functions [35, 69, 97,
98]. The RQCD collaboration has chosen to optimize the parameters in the Gaussian smear-
ing procedure, so that the overlap of the nucleon interpolating operator onto the ground
state is maximized [35]. In this way it may be possible to use shorter source-sink separations
without incurring a bias due to excited states.

The variational method, originally designed to provide detailed information on energy
levels of the ground and excited states in a given channel [99–102], has also been adapted
to the determination of hadron-to-hadron transition elements [91]. In the case of nucleon
matrix elements, the authors of Ref. [97] have employed a basis of operators to construct
interpolators that couple to individual eigenstates in the nucleon channel. The method has
produced promising results when applied to calculations of the axial and other forward matrix
elements at a fixed value of the pion mass [69, 97, 98, 103]. However, a more comprehensive
study aimed at providing an estimate at the physical point has, until now, not been performed.

The investigation of excited-state effects is an active subfield in calculations of nucleon
matrix elements, and many refinements and extensions have been implemented since the first
edition of the FLAG report. For instance, it has been shown that the previously observed
failure of the axial and pseudoscalar form factors to satisfy the PCAC relation linking them
could be avoided by including the enhanced contribution ofNπ excitations, either by including
additional information on the nucleon excitation spectrum extracted from the three-point
function of the axial current [28], or with guidance from chiral effective field theory analyses of
nucleon three-point functions [14]. Following this, in Refs. [104, 105] it has been demonstrated
that this enhanced Nπ contribution can be significantly reduced when performing a GEVP
analysis with a basis that includes a five-quark/antiquark interpolator with the quantum
numbers of the nucleon in addition to a three-quark interpolator. For the flavour-diagonal
u- and d-quark scalar operators, a χPT study of excited-state corrections [106] suggests
that there is a significant enhancement of the disconnected contribution, which impacts the
calculation of the pion-nucleon sigma term σπN as discussed in Sec. 10.4.2.

2In Ref. [94] it is shown that the method can be linked to the Feynman-Hellmann theorem. A direct
implementation of the Feynman-Hellmann theorem by means of a modification of the lattice action is discussed
and applied in Refs. [95, 96].
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The variety of methods that are employed to address the problem of excited-state contam-
ination has greatly improved our understanding of and control over excited-state effects in
calculations of nucleon matrix elements. However, there is still room for further improvement:
For instance, dedicated calculations of the excitation spectrum using the variational method
could replace the often rudimentary spectral information gained from multi-state fits to the
two- and three-point functions used primarily for the determination of the matrix elements.
In general, the development of methods to explicitly include multi-particle states, such as Nπ
and Nππ with appropriate momentum configurations, coupled with the determination of the
associated (transition) matrix elements, is needed to significantly enhance the precision of a
variety of nucleon matrix elements. Such approaches would, to some extent, eliminate the
need to extend the source-sink separation τ into a regime that is currently inaccessible due
to the signal-to-noise problem.

Since the ongoing efforts to study excited-state contamination are producing deeper in-
sights, we have decided to follow a more cautious approach in the assessment of available
calculations of nucleon matrix elements. This is reflected in a modification of the quality
criterion for excited-state contamination that is described and discussed in Sec. 10.2.

10.1.3 Renormalization and Symanzik improvement of local currents

and their matching to a continuum reference scheme such as MS, and the application of
Symanzik improvement to remove O(a) contributions. For the charges, the relevant operators
are the axial (Aµ), tensor (Tµν) and scalar (S) local operators of the form OΓ = qΓq, with
Γ = γµγ5, iσµν and 1, respectively, whose matrix elements are evaluated in the forward limit.
The steps in the renormalization of the 1-link operators, defined in Section 10.5, used to
calculate the second Mellin moments of distribution functions are similar to those for the
charges and we refer readers to Refs. [87, 107].

For the charges, the general form for renormalized operators in the isovector flavour com-
bination, at a scale µ, reads

OMS
Γ (µ) = ZMS,Latt

O (µa, g2)
[
OΓ(a) + abOmOΓ(a) + acOOimp

Γ (a)
]
+O(a2), (416)

where ZMS,Latt
O (µa, g2) denotes the multiplicative renormalization factor determined in the

chiral limit, m → 0, and the second and third terms represent all possible quark-mass-
dependent and -independent Symanzik improvement terms, respectively, at O(a).3 The chiral
properties of overlap, domain-wall fermions (with improvement up to O(mn

res) where mres is
the residual mass) and twisted-mass fermions (at maximal twist [112, 113]) mean that the
O(a)-improvement terms are absent, while for nonperturbatively improved Sheikholeslami-
Wohlert-Wilson (nonperturbatively improved clover) fermions all terms appear in principle.
For the operators of interest here there are several mass-dependent terms but at most one
dimension-four Oimp

Γ ; see, e.g., Refs. [114, 115]. However, the latter involve external deriva-
tives whose corresponding matrix elements vanish in the forward limit. Note that no mention
is made of staggered fermions as they are not, currently, widely employed as valence quarks
in nucleon matrix element calculations.

3Here, a(g2) refers to the lattice spacing in the chiral limit, however, lattice simulations are usually carried
out by fixing the value of g2 while varying the quark masses. This means a = a(g̃2) where g̃2 = g2(1 +
bgamq) [108, 109] is the improved coupling that varies with the average sea-quark mass mq. The difference
between the renormalization factors calculated with respect to g2 and g̃2 can effectively be absorbed into the
bO coefficients [110, 111].
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In order to illustrate the above remarks we consider the renormalization and improve-
ment of the isovector axial current. This current has no anomalous dimension and hence the
renormalization factor, ZA = ZMS,Latt

A (g2), is independent of the scale. The factor is usu-
ally computed nonperturbatively via the axial Ward identity [116] or the Rome-Southampton
method [117] (see Sec. A.3 of FLAG 19 [2] for details). In some studies, the ratio with the
corresponding vector renormalization factor, ZA/ZV , is determined for which some of the sys-
tematics cancel. In this case, one constructs the combination ZAgA/(ZV gV ), where ZV gV = 1
and gA and gV are the lattice forward matrix elements, to arrive at the renormalized axial
charge [47]. For domain-wall fermions the ratio is employed in order to remove O(amres) terms
and achieve leading discretization effects starting at O(a2) [118]. Thus, as mentioned above,
O(a)-improvement terms are only present for nonperturbatively improved clover fermions.
For the axial current, Eq. (416) takes the explicit form,

AMS
µ (µ) = ZMS,Latt

A (g2)
[(

1 + abAmval + 3ab̃Amsea

)
Aµ(a) + acA∂µP (a)

]
+O(a2), (417)

where mval and msea are the average valence- and sea-quark masses derived from the vector
Ward identity [109, 115, 116], and P is the pseudoscalar operator qγ5q. The matrix element
of the derivative term is equivalent to qµ⟨N(p′)|P |N(p)⟩ and hence vanishes in the forward
limit when the momentum transfer qµ = 0. The improvement coefficients bA and b̃A are
known perturbatively for a variety of gauge actions [114, 119, 120] and nonperturbatively for
the tree-level Symanzik-improved gauge action for Nf = 2 + 1 [121].

Turning to operators for individual quark flavours, these can mix under renormalization
and the singlet and nonsinglet renormalization factors can differ. For the axial current,
such mixing occurs for all fermion formulations just like in the continuum, where the singlet
combination acquires an anomalous dimension due to the UA(1) anomaly. The ratio of singlet
to nonsinglet renormalization factors, rO = Zs.

O/Z
n.s.
O for O = A differs from 1 at O(α2

s) in
perturbation theory (due to quark loops), suggesting that the mixing is a small effect. The
nonperturbative determinations performed so far find rA ≈ 1 [7, 41], supporting this. For
the tensor current the disconnected diagram vanishes in the continuum due to chirality and
consequently on the lattice rT = 1 holds for overlap and DW fermions (assuming mres = 0
for the latter). For twisted-mass and clover fermions the mixing is expected to be small with
rT = 1 +O(α3

s) [122] and this is confirmed by the nonperturbative studies of Refs. [43, 123].
The scalar operators for the individual quark flavours, qq, are relevant not only for the

corresponding scalar charges, but also for the sigma terms σq = mq⟨N |qq|N⟩ when combined
with the quark masses mq. For overlap and DW fermions rS = 1, like in the continuum and
all qq renormalize multiplicatively with the isovector ZS . The latter is equal to the inverse
of the mass renormalization and hence mqqq is renormalization group (RG) invariant. For
twisted-mass fermions, through the use of Osterwalder-Seiler valence fermions, the operators
mud(uu+ dd) and msss are also invariant [124].4 In contrast, the lack of good chiral proper-
ties leads to significant mixing between quark flavours for clover fermions. Nonperturbative
determinations via the axial Ward identity [36, 125] have found the ratio rS to be much larger
than the perturbative expectation 1+O(α2

s) [122] may suggest. While the sum over the quark
flavours which appear in the action

∑Nf
q mqqq is RG invariant, large cancellations between

4Note that for twisted-mass fermions the pseudoscalar renormalization factor is the relevant factor for the
scalar operator. The isovector (isosinglet) scalar current in the physical basis becomes the isosinglet (isovector)
pseudoscalar current in the twisted basis. Perturbatively rP = 1+O(α3

s) and nonperturbative determinations
have found rP ≈ 1 [43].
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the contributions from individual flavours can occur when evaluating, e.g., the strange sigma
term. Note that for twisted-mass and clover fermions there is also an additive contribution
∝ a−31 (or ∝ µa−21) to the scalar operator. This contribution is removed from the nucleon
scalar matrix elements by working with the subtracted current, qq − ⟨qq⟩, where ⟨qq⟩ is the
vacuum expectation value of the current [115].

Symanzik improvement for the singlet currents follows the same pattern as in the isovector
case with O(a) terms only appearing for nonperturbatively improved clover fermions. For the
axial and tensor operators only mass-dependent terms are relevant in the forward limit while
for the scalar there is an additional gluonic operator Oimp

S = Tr(FµνFµν) with a coefficient
of O(αs) in perturbation theory. When constructing the sigma terms from the quark masses
and the scalar operator, the improvement terms remain and they must be included to remove
all O(a) effects for nonperturbatively improved clover fermions, see Ref. [115] for a discussion.

10.1.4 Extrapolations in a, Mπ and MπL

To obtain physical results that can be used to compare to or make predictions for experiment,
all quantities must be extrapolated to the continuum and infinite-volume limits. In general,
either a chiral extrapolation or interpolation must also be made to the physical pion mass.
These extrapolations need to be performed simultaneously since discretization and finite-
volume effects are themselves dependent upon the pion mass. Furthermore, in practice it is
not possible to hold the pion mass fixed while the lattice spacing is varied, as some variation
in a occurs when tuning the quark masses at fixed gauge coupling. Thus, one performs a
simultaneous extrapolation in all three variables using a theoretically motivated formula of
the form,

g(Mπ, a, L) = gphys + δMπ + δa + δL , (418)

where gphys is the desired extrapolated result, and δMπ , δa, δL are the deviations due to the
pion mass, the lattice spacing, and the volume, respectively. Below we outline the forms for
each of these terms.

All observables discussed in this section are dimensionless, therefore the extrapolation
formulae may be parameterized by a set of dimensionless variables:

ϵπ =
Mπ

Λχ
, MπL , ϵa = Λaa . (419)

Here, Λχ ∼ 1 GeV is a chiral symmetry breaking scale, which, for example, can be set to
Λχ = 4πFπ, where Fπ = 92.2 MeV is the pion decay constant, and Λa is a discretization scale,
e.g., Λa = 1

4πw0
, where w0 is a gradient-flow scale [126].

Effective field theory methods may be used to determine the form of each of these ex-
trapolations. For the single nucleon charges, Heavy-Baryon χPT (HBχPT) is a common
choice [127, 128], however, other variants, such as unitarized [129] or covariant χPT [130, 131],
are also employed. Various formulations of HBχPT exist, including those for two- and three-
flavours, as well as with and without explicit ∆ baryon degrees of freedom. Two-flavour
HBχPT is typically used due to issues with convergence of the three-flavour theory [38, 132–
135]. The convergence properties of all known formulations for baryon χPT, even at the
physical pion mass, have not been well-established.
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To O(ϵ2π), the two-flavour chiral expansion for the nucleon charges is known to be of the
form [136],

g = g0 + g1ϵπ + g2ϵ
2
π + g̃2ϵ

2
π ln

(
ϵ2π
)
, (420)

where g1 = 0 for all charges g except gu,dS . The dimensionless coefficients g0,1,2, g̃2 are assumed
to be different for each of the different charges. The coefficients in front of the logarithms,
g̃2, are known functions of the low-energy constants (LECs), and do not represent new,
independent LECs. Mixed-action calculations will have further dependence upon the mixed
valence-sea pion mass, mvs.

Given the potential difficulties with convergence of the chiral expansion, known values
of the g̃2 in terms of LECs are not typically used, but are left as free fit parameters. Fur-
thermore, many quantities have been found to display mild pion-mass dependence, such that
Taylor expansions, i.e., neglecting logarithms in the above expressions, are also often em-
ployed. The lack of a rigorously established theoretical basis for the extrapolation in the
pion mass thus requires data close to the physical pion mass for obtaining high-precision
extrapolated/interpolated results.

Discretization effects depend upon the lattice action used in a particular calculation, and
their form may be determined using the standard Symanzik power counting. In general, for
an unimproved action, the corrections due to discretization effects δa include terms of the
form,

δa = c1ϵa + c2ϵ
2
a + · · · , (421)

where c1,2 are dimensionless coefficients. Additional terms of the form c̃n (ϵπϵa)
n, where n is

an integer whose lowest value depends on the combined discretization and chiral properties,
will also appear. Improved actions systematically remove correction terms, e.g., an O(a)-
improved action, combined with a similarly improved operator, will contain terms in the
extrapolation ansatz beginning at ϵ2a (see Sec. 10.1.3).

Finite volume corrections δL may be determined in the usual way from effective field the-
ory, by replacing loop integrals over continuous momenta with discrete sums. Finite volume
effects therefore introduce no new undetermined parameters to the extrapolation. For exam-
ple, at next-to-leading order, and neglecting contributions from intermediate ∆ baryons, the
finite-volume corrections for the axial charge in two-flavour HBχPT take the form [137],

δL ≡ gA(L)− gA(∞) =
8

3
ϵ2π

[
g3A, 0F1 (MπL) + gA, 0F3 (MπL)

]
, (422)

where

F1 (mL) =
∑
n̸=0

[
K0 (mL|n|)− K1 (mL|n|)

mL|n|

]
,

F3 (mL) = −3

2

∑
n̸=0

K1 (mL|n|)
mL|n|

, (423)

and Kν(z) are the modified Bessel functions of the second kind. Some extrapolations are
performed using the form for asymptotically large MπL,

K0(z)→
e−z

√
z

, (424)
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and neglecting contributions due to K1. Care must, however, be taken to establish that
these corrections are negligible for all included values of MπL. The numerical coefficients, for
example, 8/3 in Eq. (422), are often taken to be additional free fit parameters, due to the
question of convergence of the theory discussed above.

Given the lack of knowledge about the convergence of the expansions and the resulting
plethora of possibilities for extrapolation models at differing orders, it is important to include
statistical tests of model selection for a given set of data. Bayesian model averaging [138]
or use of the Akaike Information Criterion [139] are common choices which penalize over-
parameterized models.

10.2 Quality criteria for nucleon matrix elements and averaging procedure

There are two specific issues that call for a modification and extension of the FLAG quality
criteria listed in Sec. 2. The first concerns the rating of the chiral extrapolation: The FLAG
criteria reflect the ability of χPT to provide accurate descriptions of the pion-mass depen-
dence of observables. Clearly, this ability is linked to the convergence properties of χPT in a
particular mass range. Quantities extracted from nucleon matrix elements are extrapolated
to the physical pion mass using some variant of baryonic χPT, whose convergence is not well
established as compared to the mesonic sector. Therefore, we have opted for stricter quality
criteria, 200 MeV ≤ Mπ,min ≤ 300 MeV, for a green circle in the chiral extrapolation of
nucleon matrix elements, i.e.,

⋆ Mπ,min < 200 MeV with three or more pion masses used in the extrapolation
or two values of Mπ with one lying within 10 MeV of 135 MeV (the physical neutral
pion mass) and the other one below 200 MeV

◦ 200 MeV ≤Mπ,min ≤ 300 MeV with three or more pion masses used in the extrapolation;
or two values of Mπ with Mπ,min < 200 MeV;
or a single value of Mπ lying within 10 MeV of 135MeV (the physical neutral pion mass)

■ Otherwise

In Sec. 10.1.2 we have discussed that insufficient control over excited-state contributions,
arising from the noise problem in baryonic correlation functions, may lead to a systematic
bias in the determination of nucleon matrix elements. We therefore introduce an additional
criterion that rates the efforts to suppress excited-state contamination in the final result. As
described in Sec. 10.1.2, the applied methodology to control excited-state contamination is
quite diverse. Since a broad consensus on the question which procedures should be followed
has yet to emerge, our criterion is expressed in terms of simulation parameters that can be
straightforwardly extracted on the basis of publications. Furthermore, the criterion must
also be readily applicable to a variety of different local operators whose matrix elements are
discussed in this chapter. These requirements are satisfied by the source-sink separation τ ,
i.e., the Euclidean distance between the initial and final nucleons. The discussion at the end
of Sec. 10.1.2 shows that there is room for improvement in the ability to control excited-state
contamination. Hence, we have reverted to a binary system, based on the range of source-sink
separations of a given calculations. While we do not award the highest category—a green
star—in this edition, we stress that the adoption of the modified criterion for excited-state
contamination has not led to a situation where calculations that were previously rated with
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a green star are now excluded from FLAG averages. The rating scale concerning control over
excited-state contributions is thus

◦ Three or more source-sink separations τ , at least two of which must be above 1.0 fm.
■ Otherwise

We will continue to monitor the situation concerning excited-state contamination and, if
necessary, adapt the criteria further in future editions of the FLAG report.

As explained in Sec. 2, FLAG averages are distinguished by the sea-quark content. Hence,
for a given configuration of the quark sea (i.e., forNf = 2, 2+1, 2+1+1, or 1+1+1+1), we first
identify those calculations that pass the FLAG and the additional quality criteria defined in
this section, i.e., excluding any calculation that has a red tag in one or more of the categories.
We then add statistical and systematic errors in quadrature and perform a weighted average.
If the fit is of bad quality (i.e., if χ2

min/dof > 1), the errors of the input quantities are scaled
by

√
χ2/dof. In the following step, correlations among different calculations are taken into

account in the error estimate by applying Schmelling’s procedure [140].

10.3 Isovector charges

The axial, scalar and tensor isovector charges are needed to interpret the results of many
experiments and phenomena mediated by weak interactions, including probes of new physics.
The most natural process from which isovector charges can be measured is neutron beta
decay (n → p+e−νe). At the quark level, this process occurs when a down quark in a
neutron transforms into an up quark due to weak interactions, in particular due to the axial-
current interaction. While scalar and tensor currents have not been observed in nature,
effective scalar and tensor interactions arise in the SM due to loop effects. At the TeV and
higher scales, contributions to these three currents could arise due to new interactions and/or
loop effects in BSM theories. These super-weak corrections to standard weak decays can be
probed through high-precision measurements of the neutron decay distribution by examining
deviations from SM predictions as described in Ref. [141]. The lattice-QCD methodology for
the calculation of isovector charges is well established, and the control over statistical and
systematic uncertainties has become quite robust since the first edition of the FLAG report
that featured nucleon matrix elements [2].

The axial charge gu−d
A is an important parameter that encapsulates the strength of weak

interactions of nucleons. It enters in many analyses of nucleon structure and of SM and BSM
physics. For example, it enters in (i) the extraction of Vud and tests of the unitarity of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix; (ii) the analysis of neutrinoless double-beta de-
cay, (iii) neutrino-nucleus quasi-elastic scattering cross-section; (iv) the rate of proton-proton
fusion, the first step in the thermonuclear reaction chains that power low-mass hydrogen-
burning stars like the Sun; (v) solar and reactor neutrino fluxes; (vi) muon capture rates, etc.
Currently the best determination of the ratio of the axial to the vector charge, gA/gV , comes
from measurement of neutron beta decay using polarized ultracold neutrons by the UCNA
collaboration, 1.2772(20) [142, 143], and by PERKEO II, 1.2761+14

−17 [144]. Note that, in the
SM, gV = 1 up to second-order corrections in isospin breaking [145, 146] as a result of the
conservation of the vector current. The percent-level contributions of radiative corrections
discussed in Ref. [147] will need to be considered once the accuracy of the lattice-QCD cal-
culations reaches that of gu−d

A measured in experiments. The current goal is to calculate it
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directly with O(1%) accuracy using lattice QCD.
Isovector scalar or tensor interactions contribute to the helicity-flip parameters, called b

and B, in the neutron decay distribution. By combining the calculation of the scalar and
tensor charges with the measurements of b and B, one can put constraints on novel scalar
and tensor interactions at the TeV scale as described in Ref. [141]. To optimally bound
such scalar and tensor interactions using measurements of b and B parameters in planned
experiments targeting 10−3 precision [148–150], we need to determine gu−d

S and gu−d
T at the

10% level as explained in Refs. [47, 141]. Future higher-precision measurements of b and B
would require correspondingly higher-precision calculations of the matrix elements to place
even more stringent bounds on these couplings at the TeV-scale.

One can estimate gu−d
S via the conserved vector current (CVC) relation, gS/gV = (Mneutron−

Mproton)
QCD/(md −mu)

QCD, as done by Gonzalez-Alonso et al. [151]. In their analysis, they
took estimates of the two mass differences on the right-hand side from the global lattice-QCD
data [152] and obtained gu−d

S = 1.02(8)(7).

The tensor charge gu−d
T can be extracted experimentally from semi-inclusive deep-inelastic

scattering (SIDIS) data [153–156]. A sample of these phenomenological estimates is shown in
Fig. 44, and the noteworthy feature is that the current uncertainty in these phenomenological
estimates is large.

10.3.1 Results for gu−d
A , gu−d

S and gu−d
T

Results for the isovector axial, scalar and tensor charges are presented in Tabs. 67, 68 and
69, respectively. Compared with previous editions of the FLAG report, we have made two
changes: First, we have stopped listing results for isovector charges from simulations in two-
flavour QCD, since no new results have been reported since 2018. Secondly, for simulations
using 2+1 or 2+1+1 flavours of dynamical quarks, we have imposed a cutoff to focus on results
published after 2014. For full listings, including results obtained in two-flavour QCD [31, 33–
35, 37, 39, 41, 43, 168] or published prior to our cutoff date [44, 53–55, 68, 169–171], we refer
to earlier editions of the FLAG report.

For the sake of brevity, only calculations completed after FLAG21 and calculations that
meet the criteria for inclusion in averages are described below. For detailed descriptions of
past calculations and those that do not meet the criteria, the reader is again referred to
earlier editions of FLAG. The final results for the scalar and tensor charges, gu−d

S and gu−d
T ,

are presented in the MS-scheme at a reference scale of 2 GeV by all collaborations.
The 2 + 1-flavour calculation of the scalar and tensor charges by χQCD 21A [172] was

performed using a mixed-action approach with domain-wall fermion gauge configurations
generated by the RBC/UKQCD collaboration and overlap valence quarks. They include
five pion masses ranging from mπ ∼ 140 MeV to 370 MeV, four lattice spacings (a ∼ 0.06,
0.08, 0.11, and 0.14 fm), thereby considerably extending the parameter range in their earlier
calculation of the axial charge in χQCD18 [27]. Matrix elements are computed for three
to six different valence-quark masses on each ensemble. The extrapolation to the physical
pion mass, continuum and infinite-volume limits is obtained by a global fit of all data to a
partially quenched chiral perturbation theory ansatz. Excited-state contamination is assessed
using three to five sink-source separations and multi-state fits. Renormalization factors were
determined nonperturbatively using the RI/MOM prescription.

The NME 21 [167] 2 + 1-flavour calculation utilized seven ensembles of O(a)-improved
Wilson fermions. Three lattice spacings, ranging from a ∼ 0.07 fm to 0.13 fm, several pion
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gu−d
A

ETM 23 [157] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ◦ 1.245(28)(14)c

PNDME 23a [158] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 1.292(53)(24)c

CalLat 19 [159] 2+1+1 C ◦ ⋆ ⋆ ⋆ ◦ 1.2642(93)

ETM 19 [160] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ 1.286(23)

PNDME 18a [51] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 1.218(25)(30)

CalLat 18 [52] 2+1+1 A ◦ ⋆ ⋆ ⋆ ◦ 1.271(10)(7)

CalLat 17 [48] 2+1+1 P ◦ ⋆ ⋆ ⋆ ◦ 1.278(21)(26)

PNDME 16a [47] 2+1+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 1.195(33)(20)

Mainz 24 [161] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 1.254(19)(15)

PACS 23 [162] 2+1 A ■ ◦ ⋆ ⋆ ◦ 1.264(14)(3)

RQCD 23 [163] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 1.284(+0.028
−0.027)

QCDSF/UKQCD/CSSM 23 [164] 2+1 A ⋆ ◦ ⋆ ⋆ ◦ 1.253(63)(41)d

PACS 22B [165] 2+1 A ■ ◦ ⋆ ⋆ ◦ 1.288(14)(9)

Mainz 22 [166] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 1.225(39)(25)c

NME 21a [167] 2+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 1.31(6)(5)

RQCD 19 [14] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 1.302(45)(73)c

LHPC 19 [15] 2+1 A ■
‡ ⋆ ⋆ ⋆ ◦ 1.265(49)

Mainz 19 [87] 2+1 A ⋆ ◦ ⋆ ⋆ ◦ 1.242(25)(+0
−0.030)

PACS 18A [13] 2+1 A ■ ⋆ ⋆ ⋆ ◦ 1.273(24)(5)(9)

PACS 18 [11] 2+1 A ■ ■ ⋆ ⋆ ■ 1.163(75)(14)

χQCD 18 [27] 2+1 A ◦ ⋆ ⋆ ⋆ ◦ 1.254(16)(30)$

JLQCD 18 [61] 2+1 A ■ ◦ ◦ ⋆ ◦ 1.123(28)(29)(90)

a The improvement coefficient in the valence-quark action is set to its tadpole-improved tree-level value.
b The quark action is tree-level improved.
c Determination includes data for nonforward matrix elements.
d Feynman-Hellmann theorem is used to determine the matrix element.
‡ The rating takes into account that the action is not fully O(a)-improved by requiring an additional

lattice spacing.
$ For this partially quenched analysis the criteria are applied to the unitary points.

Table 67: Overview of results for gu−d
A .

masses, mπ ∼ 165 MeV to 285 MeV, and volumes corresponding to mπL ∼ 3.75 to 6.15
were used. Combined continuum, chiral, and infinite-volume extrapolations were performed
to the physical point using leading-order fit functions. Several fitting strategies were explored
using four to six source-sink separations ranging from 0.7–1.8 fm. Final results are quoted
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gu−d
S

PNDME 23 [158] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 1.085(50)(103)

ETM 19 [160] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ 1.35(17)

PNDME 18 [51] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 1.022(80)(60)

PNDME 16 [47] 2+1+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 0.97(12)(6)

Mainz 24 [161] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 1.203(77)(81)

RQCD 23 [163] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 1.11+14
−16

QCDSF/UKQCD/CSSM 23 [164] 2+1 A ⋆ ◦ ⋆ ⋆ ◦d 1.08(21)(03)d

PACS 22B [165] 2+1 A ■ ◦ ⋆ ⋆ ◦ 0.927(83)(22)

NME 21 [167] 2+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 1.06(9)(6)

χQCD 21A [172] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 0.94(10)(08)$

RBC/UKQCD 19 [173] 2+1 A ■ ◦ ⋆ ⋆ ■ 0.9(3)

Mainz 19 [87] 2+1 A ⋆ ◦ ⋆ ⋆ ◦ 1.13(11)(76)

LHPC 19 [15] 2+1 A ■
‡ ⋆ ⋆ ⋆ ◦ 0.927(303)

JLQCD 18 [61] 2+1 A ■ ◦ ◦ ⋆ ◦ 0.88(8)(3)(7)

d Feynman-Hellmann theorem is used.
‡ The rating takes into account that the action is not fully O(a)-improved by requiring an additional

lattice spacing.
$ For this partially quenched analysis the criteria are applied to the unitary points.

Table 68: Overview of results for gu−d
S .

by averaging results from two of these fitting strategies, in which the excited-state energy for
the three-point function is fixed using two alternative choices of priors. Renormalization is
nonperturbative (RI-SMOM) using two strategies.

PACS 22B [165] reports estimates for the scalar and tensor charges, computed on two
ensembles with nonperturbatively improved Wilson quark and Iwasaki gauge action at a
single lattice spacing of 0.085 fm, pion mass near physical value, and two volumes with
mπL ∼ 3.7 and 7.4. Two to four source-sink separations ranging from 0.85–1.36 fm were used
to estimate contributions from excited states. They employ the RI-SMOMγµ renormalization
procedure. Due to the use of only a single lattice spacing, this calculation does not meet the
criteria for inclusion in the average. In PACS 23 [162], another ensemble was considered for
the calculation of the axial charge and form factors, which features a smaller lattice spacing
of 0.063 fm, a 10 fm spatial box size and a near-physical pion mass of 138 MeV. The range of
source-sink separations matches the choice in PACS 22B. The size of discretization effects is
estimated by the difference between results at fine and coarser lattice spacings. Since these
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gu−d
T

PNDME 23 [158] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 0.991(21)(10)

ETM 22 [174] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ◦ 0.924(54)

ETM 19 [160] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ 0.936(25)

PNDME 18 [51] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 0.989(32)(10)

PNDME 16 [47] 2+1+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 0.987(51)(20)

PNDME 15, 15A [45, 46] 2+1+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 1.020(76)

Mainz 24 [161] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 0.993(15)(05)

RQCD 23 [163] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 0.984+19
−29

QCDSF/UKQCD/CSSM 23 [164] 2+1 A ⋆ ◦ ⋆ ⋆ ◦d 1.010(21)(12)

PACS 22B [165] 2+1 A ■ ◦ ⋆ ⋆ ◦ 1.036(6)(20)

NME 21 [167] 2+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 0.95(5)(2)

RBC/UKQCD 19 [173] 2+1 A ■ ◦ ⋆ ⋆ ■ 1.04(5)

Mainz 19 [87] 2+1 A ⋆ ◦ ⋆ ⋆ ◦ 0.965(38)(1341)

LHPC 19 [15] 2+1 A ■
‡ ⋆ ⋆ ⋆ ◦ 0.972(41)

JLQCD 18 [61] 2+1 A ■ ◦ ◦ ⋆ ◦ 1.08(3)(3)(9)

d Feynman-Hellmann theorem is used.
‡ The rating takes into account that the action is not fully O(a)-improved by requiring an additional

lattice spacing.

Table 69: Overview of results for gu−d
T .

results are based on only two lattice spacings, they do not qualify for an average.
The calculation of all three isovector charges by QCDSF/UKQCD/CSSM 23 [164] used

a Feynman-Hellmann approach to determine matrix elements from derivatives of energies
produced via a variation of the action. These energies were determined from fits to two-point
correlation functions, where a weighted average is taken of the results obtained when varying
the fitting range. The computations utilized the 2 + 1-flavour stout-link nonperturbative
clover action with Wilson-clover valence quarks. Pion masses range from 220–468 MeV, using
a flavour-breaking expansion around the flavour SU(3) point to extrapolate to physical pion
mass. Combined pion-mass, lattice-spacing, and volume extrapolations were performed, using
multiple volumes ranging from mπL ∼ 3.2–9, and five lattice spacings, 0.052–0.082 fm. Only
the leading discretization effects and asymptotic form of the volume extrapolation, Eq. (424),
were included. They employ the RI’-MOM prescription for nonperturbative renormalization.

The calculations of gu−d
A , gu−d

S and gu−d
T published by RQCD 23 [163] and Mainz 24 [161]

are both based on 2+1-flavour ensembles generated by the CLS effort using nonperturbatively
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improved Wilson fermions. The subsets of ensembles used in the two calculations partly
overlap. The 48 ensembles used by RQCD23 [163] span six values of the lattice spacing, from
0.039–0.098 fm, pion masses from 130 MeV up to 430 MeV, and volumes corresponding to
mπL ∼ 3–6.5. Excited states are controlled using simultaneous two- and three-state fits of up
to four different observables using four time separations, t ≈ 0.7–1.2 fm, with a number of fit
strategies employed. Extrapolations to the physical point were performed using leading-order
chiral expressions for the pion mass, the leading asymptotic form for finite-volume corrections,
and terms up to a2 in the lattice spacing. Renormalization uses the nonperturbative RI’-
SMOM scheme. In an earlier paper (RQCD19 [14]), the Regensburg group computed the
axial form factor on a subset of the ensembles that enter RQCD23. The estimate for gu−d

A

from an analysis including matrix elements for nonforward kinematics is also listed in Tab. 67
but has been superseded by the result in RQCD23.

The Mainz 24 [161] calculation, which supersedes Mainz 19 [87], uses four lattice spacings
(a ∼ 0.05 fm to 0.086 fm) from the CLS set of ensembles, pion masses ranging from ∼ 130 MeV
to ∼ 350 MeV, and volumes corresponding to mπL ∼ 3–5.4. Physical-point extrapolations
were performed simultaneously in the lattice spacing, pion mass, and volume. In Mainz 24,
the range of source-sink separations used was enlarged to 0.2–1.4 fm, which allowed for the
inclusion of sub-leading terms in the summation method for improved control over excited-
state effects. Renormalization was performed nonperturbatively using the RI-SMOM scheme.
The Mainz group has also performed a calculation of the axial form factor (Mainz 22 [166])
on the same set of ensembles, by incorporating the summation method directly into the z-
expansion used to describe the Q2-dependence. The corresponding estimate for gu−d

A from
an analysis including nonforward matrix elements has larger errors than the most recent
result [161].

New results for Nf = 2 + 1 + 1 flavours of dynamical fermions have been published by
PNDME [158] and ETM [157, 174]. The mixed-action calculation by PNDME 23 [158],
which supersedes PNDME 18 [51] and PNDME 16 [47], was performed using the MILC
HISQ ensembles, with a clover valence action. As in PNDME 18 [51], the 11 ensembles used
include three pion-mass values, Mπ ∼ 135, 225, 320 MeV, and four lattice spacings, a ∼
0.06, 0.09, 0.12, 0.15 fm. Note that four lattice spacings are required to meet the green
star criteria, as this calculation is not fully O(a)-improved. Lattice size ranges between
3.3 ≲ MπL ≲ 5.5. Physical-point extrapolations were performed simultaneously, keeping
only the leading-order terms in the various expansion parameters. For the finite-volume
extrapolation, the asymptotic limit of the χPT prediction, Eq. (424), was used. PNDME 23
[158] adds a study of sensitivity to excited-state contamination using between three and
five source-sink time separations from 0.72 ≲ τ ≲ 1.68 fm, and several strategies, including
removing Nπ contributions. Renormalization was performed nonperturbatively using the
RI-SMOM scheme.

The ETM collaboration has presented new results for the tensor charge (ETM 22 [174])
and for the axial charge (ETM 23 [157]). Both calculations use three ensembles with 2+1+1-
flavour twisted-mass fermions with close-to-physical pion masses at a = 0.057, 0.069 and
0.080 fm, with volumes corresponding to mπL ∼ 3.6–3.9. These results supersede those in
[160] based on the single ensemble at a = 0.080 fm. To control excited-state effects, they
compared results from the plateau, summation method and two-state fits. After applying
nonperturbative renormalization via the RI’-MOM method supplemented by a perturbative
subtraction of lattice artefacts [175, 176], they perform the extrapolation to the continuum
limit via a fit which is linear in a2.
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Figure 42: Lattice results and FLAG averages for the isovector axial charge gu−d
A 2 + 1 and

2 + 1 + 1 flavour calculations. Also shown is the experimental result as quoted in the PDG
[177].

We now proceed to discussing global averages for the isovector charges. The compilation
of results for the axial charge gu−d

A , plotted in Fig. 42, shows that the situation has greatly
improved in terms of stability and precision thanks to several new calculations that have
been added since FLAG21. For QCD with Nf = 2 + 1 + 1 dynamical quarks, the latest
calculations by ETM23 [157], PNDME23 [158] and CalLat 19 [159] pass all quality criteria.
Since PNDME and CalLat both use gauge ensembles produced by MILC, we assume that
the quoted errors are 100% correlated, even though the range of pion masses and lattice
spacings explored in Refs. [158] and [52, 159] is not exactly identical. The two results are
fully consistent within errors, which is an improvement, since FLAG21 reported a slight
tension between CalLat 19 [159] and PNDME18 [51]. The calculation by ETM23 [157] uses
an independent set of ensembles. Performing a weighted average yields gu−d

A = 1.2633(100)
with χ2/dof = 0.30. The result by CalLat dominates the 2 + 1 + 1 weighted average due to
its smaller error. Values for δ(amin) for the two Nf = 2 + 1 + 1 calculations that enter the
averages vary between 1.0–1.5 (PNDME23: 1.0, CalLat 19: 1.5).

For QCD with Nf = 2 + 1 dynamical quarks, we compute a weighted average from the
results χQCD 18 [27], NME 21 [167], QCDSF/UKQCD/CSSM23 [164], RQCD23 [163] and
Mainz 24 [161]. Since the calculations by the Mainz group and RQCD were both performed
on ensembles generated by the CLS effort, we treat the results RQCD23 [163] and Mainz 24
[161] as 100% correlated. This yields gu−d

A = 1.265(20) with χ2/dof = 0.28. Values for δ(amin)
for the qualified calculations for Nf = 2+1 suggest that discretization effects are under good
control (NME21: 0.15, QCDSF/UKQCD/CSSM 23: 0.6, RQCD23: 2.0, Mainz 24: 2.3).
From the information provided in the paper, it is not possible to infer δ(amin) for χQCD 18.
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To summarize, the FLAG averages for the axial charge read

Nf = 2 + 1 + 1 : gu−d
A = 1.263(10) Refs. [52, 157–159], (425)

Nf = 2 + 1 : gu−d
A = 1.265(20) Refs. [27, 161, 163, 164, 167]. (426)

The averages computed for QCD with Nf = 2+1+1 and Nf = 2+1 flavours are in excellent
agreement, with a relative precision of 0.8% and 1.5%, respectively. The average for 2+1+1
flavours exhibits a mild tension of 1.25σ with the experimental value of gu−d

A = 1.2756(13)
quoted by the PDG. While lattice QCD is able to determine the axial charge with a total
relative uncertainty at the percent level, the experimental result is more precise by an order of
magnitude. We conclude with the remark that there has been enormous progress in calculating
this important benchmark quantity in lattice QCD over the course of the past 10–15 years,
owing to a variety of methods to control excited-state effects, higher statistical precision, as
well as much better control over the extrapolation to the physical point.

Turning now to the isovector scalar charge, we note that—in addition to the direct three-
point method—its value can also be determined indirectly via the conserved vector cur-
rent (CVC) relation from results for the neutron-proton mass difference [178–186] and the
down- and up-quark-mass difference (see Sec. 4.1.3). For comparison, the compilation in
Fig. 43 also shows the indirect determination by Gonzalez-Alonso et al. [151] obtained using
lattice and phenomenological input.

For 2 + 1 + 1 flavours, only PNDME 23 [158], which supersedes PNDME 18 [51] and
PNDME 16 [47], meets all the criteria for inclusion in the average. Consequently we identify
the result from PNDME 23 with the global average.

There are five 2 + 1-flavour calculations which satisfy all criteria required for inclusion in
the average, i.e., χQCD 21A [172], NME21 [167], QCDSF/UKQCD/CSSM23 [164], RQCD23
[163] and Mainz 24 [161]. The calculations by PACS22B [165] and LHP19 [15] have been
performed at fewer than three lattice spacings and therefore do not meet the criteria. As in
the case of the isovector charge, we assume 100% correlation between the results reported
by Mainz 24 and RQCD23, since the calculations were both performed on the CLS set of
ensembles. Values of δ(amin) for the qualified calculations range from 0.4–2.4 (PNDME 23:
1.6, NME 21: 2.4, RQCD 23: 0.4, Mainz 24: 0.5). It is not possible based on the information
given to determine δ(amin) for χQCD 21 or QCDSF/UKQCD/CSSM 23, however, in the
former calculation it is noted that all data on the finest lattice spacing is within one sigma of
the quoted final result, while for the latter extrapolations performed without accounting for
discretization effects give results within one sigma of the final quoted result. Thus it is likely
that in these cases δ(amin) is within a reasonable range.

The final FLAG values for gu−d
S are

Nf = 2 + 1 + 1 : gu−d
S = 1.085(114) Ref. [158], (427)

Nf = 2 + 1 : gu−d
S = 1.083(69) Refs. [161, 163, 164, 167, 172], (428)

so that the total relative error for Nf = 2 + 1 + 1 and 2 + 1 is about 10.5% and 6.4%,
respectively. This implies that the relevant precision target for current experimental searches
for new scalar interactions has been met.

Estimates of the isovector tensor charge are generally at a high level of precision, with
values that are stable over time, as can be seen from the compilation given in Tab. 69 and
plotted in Fig. 44. This is a consequence of the smaller statistical fluctuations in the raw
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Figure 43: Lattice results and FLAG averages for the isovector scalar charge gu−d
S for Nf = 2,

2 + 1, and 2 + 1 + 1 flavour calculations. Also shown is a phenomenological result obtained
using the conserved vector current (CVC) relation [151] (circle).

data and the very mild dependence on a, Mπ, and the lattice size MπL. As a result, the
uncertainty due to the various extrapolations is small. Also shown for comparison in Fig. 44
are phenomenological results using measures of transversity [187–194].

ForNf = 2+1+1 flavours, two calculations meet all the criteria for inclusion in the average:
PNDME 23 [158], which supersedes PNDME 18 [51] and PNDME 16 [47], and ETM 22 [174].
Computational details for PNDME 23 and ETM 22 have already been described above.

Using Nf = 2 + 1 flavours, four calculations meet all criteria for inclusion in the average:
NME 21[167], QCDSF/UKQCD/CSSM23 [164], RQCD 23 [163], and Mainz 24 [161] calcula-
tion, which supersedes Mainz 19 [87]. Details of these calculations, as well as the PACS 22B
[165] calculation which does not meet all criteria for inclusion in the average, have been de-
scribed above. As in the cases of the axial and scalar charge, we assume 100% correlation
between the Mainz 24 and RQCD 23 calculations. Values of δ(amin) for the qualified calcu-
lations range from 0.03–2 (PNDME 23: 2, NME 21: 0.5, RQCD 23: 0.03, Mainz 24: 0.5).
Similarly to the case for gS , it is not possible based on the information given to determine
δ(amin) for χQCD 21 or QCDSF/UKQCD/CSSM 23. However, in the former calculation it is
noted that all data on the finest lattice spacing is within one sigma of the quoted final result,
while for the latter extrapolations performed without accounting for discretization give results
within one sigma of the final quoted result. Thus, it is likely that in these cases δ(amin) is
within a reasonable range.
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Figure 44: Lattice results and FLAG averages for the isovector tensor charge gu−d
T for

Nf = 2, 2+1, and 2+1+1 flavour calculations. Also shown are phenomenological results
using measures of transversity [187–194] (circles).

The final FLAG values for gu−d
T are

Nf = 2 + 1 + 1 : gu−d
T = 0.981(21) Ref. [158, 174], (429)

Nf = 2 + 1 : gu−d
T = 0.993(15) Refs. [161, 163, 164, 167], (430)

which implies that the isovector tensor charge is determined at the level of 1.5–2.0% relative
precision.

10.4 Flavour-diagonal charges

Three examples of interactions for which matrix elements of flavour-diagonal operators (qΓq
where Γ defines the Lorentz structure of the bilinear quark operator) are needed are the
neutral-current interactions of neutrinos, elastic scattering of electrons off nuclei, and the
scattering of dark matter off nuclei. In addition, these matrix elements also probe intrinsic
properties of nucleons (the spin, the nucleon sigma term and strangeness content, and the
contribution of the electric dipole moment (EDM) of the quarks to the nucleon EDM) as
explained below. For brevity, all operators are assumed to be appropriately renormalized as
discussed in Sec. 10.1.3.

The matrix elements of the scalar operator qq with flavour q give the rate of change in
the nucleon mass due to nonzero values of the corresponding quark mass. This relationship is
given by the Feynman-Hellmann theorem. The quantities of interest are the nucleon σ-term,
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σπN , and the strange and charm content of the nucleon, σs and σc,

σπN = mud⟨N |uu+ dd|N⟩ , (431)

σs = ms⟨N |ss|N⟩ , (432)

σc = mc⟨N |cc|N⟩ . (433)

Here, mud is the average of the up- and down-quark masses and ms, mc are the strange-
and charm-quark masses. The σπN,s,c give the shift in MN due to nonzero light-, strange-
and charm-quark masses. The same matrix elements are also needed to quantify the spin-
independent interaction of dark matter with nucleons. Note that, while σb and σt are also
phenomenologically interesting, they are unlikely to be calculated on the lattice due to the
expected tiny signal in the matrix elements. In principle, the heavy sigma terms can be
estimated using σu,d,s by exploiting the heavy-quark limit [195–197].

The matrix elements of the axial operator qγµγ5q give the contribution ∆q of quarks of
flavour q to the spin of the nucleon:

⟨N |qγµγ5q|N⟩ = gqAuNγµγ5uN ,

gqA ≡ ∆q =

∫ 1

0
dx(∆q(x) + ∆q(x)) . (434)

The charge gqA is thus the contribution of the spin of a quark of flavour q to the spin of the
nucleon. It is also related to the first Mellin moment of the polarized parton distribution
function (PDF) ∆q as shown in the second line in Eq. (434). Measurements by the European
Muon collaboration in 1987 of the spin asymmetry in polarized deep inelastic scattering
showed that the sum of the spins of the quarks contributes less than half of the total spin of
the proton [198]. To understand this unexpected result, called the “proton spin crisis”, it is
common to start with Ji’s sum rule [199], which provides a gauge invariant decomposition of
the nucleon’s total spin, as

1

2
=

∑
q=u,d,s,c,·

(
1

2
∆q + Lq

)
+ Jg , (435)

where ∆q/2 ≡ gqA/2 is the contribution of the intrinsic spin of a quark with flavour q; Lq

is the orbital angular momentum of that quark; and Jg is the total angular momentum of
the gluons. Thus, to obtain the spin of the proton starting from QCD requires calculating
the contributions of the three terms: the spin and orbital angular momentum of the quarks,
and the angular momentum of the gluons. Lattice-QCD calculations of the various matrix
elements needed to extract the three contributions are underway. An alternate decomposition
of the spin of the proton has been provided by Jaffe and Manohar [200]. The two formulations
differ in the decomposition of the contributions of the quark orbital angular momentum and
of the gluons. The contribution of the quark spin, which is the subject of this review and
given in Eq. (434), is the same in both formulations.

The tensor charges are defined as the matrix elements of the tensor operator qσµνq with
σµν = {γµ, γν}/2:

gqTuNσµνuN = ⟨N |qσµνq|N⟩ . (436)

These flavour-diagonal tensor charges gu,d,s,cT quantify the contributions of the u, d, s, c
quark EDM to the neutron electric dipole moment (nEDM) [45, 201]. Since particles can
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have an EDM only due to P- and T- (or CP- assuming CPT is a good symmetry) violating
interactions, the nEDM is a very sensitive probe of new sources of CP violation that arise
in most extensions of the SM designed to explain nature at the TeV scale. The current
experimental bound on the nEDM is dn < 1.8× 10−26 e cm [202, 203], while the known CP
violation in the SM implies dn < 10−31 e cm [204]. A nonzero result over the intervening
five orders of magnitude would signal new physics. Planned experiments aim to reduce the
bound to around 10−28 e cm. A discovery or reduction in the bound from these experiments
will put stringent constraints on many BSM theories, provided the matrix elements of novel
CP-violating interactions, of which the quark EDM is one, are calculated with the required
precision.

One can also extract these tensor charges from the zeroth moment of the transversity
distributions that are measured in many experiments including Drell-Yan and semi-inclusive
deep inelastic scattering (SIDIS). Of particular importance is the active program at Jefferson
Lab (JLab) to measure them [153, 154]. Transversity distributions describe the net transverse
polarization of quarks in a transversely polarized nucleon. Their extraction from the data
taken over a limited range of Q2 and Bjorken x is, however, not straightforward and requires
additional phenomenological modeling. At present, lattice-QCD estimates of gu,d,sT , presented
in the next section, are more accurate than these phenomenological estimates [187–194]. Fu-
ture experiments will significantly improve the extraction of the transversity distributions.
Thus, accurate calculations of the tensor charges using lattice QCD will continue to help
elucidate the structure of the nucleon in terms of quarks and gluons and provide a bench-
mark against which phenomenological estimates utilizing measurements at JLab and other
experimental facilities worldwide can be compared.

The methodology for the calculation of flavour-diagonal charges is well-established. The
major challenges are the much larger statistical errors in the disconnected contributions for
the same computational cost and the need for the additional calculations of the isosinglet
renormalization factors. In this report, we present results for the axial and tensor charges in
the same section 10.4.1 since they are mostly calculated together and because the statistical
and systematic uncertainties are similar. The calculation of the scalar charges can, however,
be done in two ways and the results are therefore presented separately in section 10.4.2.

10.4.1 Results for gu,d,sA and gu,d,sT

A compilation of results for the flavour-diagonal axial (tensor) charges for the proton is given
in Tab. 70 (Tab. 71), and are plotted in Fig. 45. Results for the neutron can be obtained
by interchanging the u- and d-flavour indices. To keep the report current, publications from
before 2014 that do not satisfy one or more of the FLAG criteria and the Nf = 2 results have
been removed. They can be obtained from the FLAG 19 [2] and FLAG 21 [1] reports.

There are no new results that qualify for FLAG averages, so the FLAG values for the
proton in the MS scheme at 2 GeV remain the same as in FLAG 19 [2] and FLAG 21 [1].

For gu,d,sA , only the PNDME 18A [50] calculation qualifies for the 2+1+1-flavour theory, and
only the χQCD 18 [27] for 2+1 flavours.

The PNDME 18A [50] results were obtained using the 2+1+1-flavour clover-on-HISQ
formulation. The connected contributions were obtained on 11 HISQ ensembles generated
by the MILC collaboration with a ≈ 0.057, 0.87, 0.12 and 0.15 fm, Mπ ≈ 135, 220 and
320 MeV, and 3.3 < MπL < 5.5. The light disconnected contributions were obtained on
six of these ensembles with the lowest pion mass Mπ ≈ 220 MeV, while the strange discon-
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guA gdA

PNDME 20 [205] 2+1+1 C ⋆‡ ⋆ ⋆ ⋆ ◦ 0.790(23)(30) −0.425(15)(30)

ETM 19 [160] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ 0.862(17) −0.424(16)

PNDME 18A [50] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 0.777(25)(30)# −0.438(18)(30)#

Mainz 19A [206] 2+1 C ⋆ ◦ ⋆ ⋆ ◦ 0.84(3)(4) −0.40(3)(4)

χQCD 18 [27] 2+1 A ◦ ⋆ ⋆ ⋆ ◦ 0.847(18)(32)$ −0.407(16)(18)$

gsA

PNDME 20 [205] 2+1+1 C ⋆‡ ⋆ ⋆ ⋆ ◦ −0.053(7)

ETM 19 [160] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ −0.0458(73)

PNDME 18A [50] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ −0.053(8)#

Mainz 19A [206] 2+1 C ⋆ ◦ ⋆ ⋆ ◦ −0.044(4)(5)

χQCD 18 [27] 2+1 A ◦ ⋆ ⋆ ⋆ ◦ −0.035(6)(7)$

JLQCD 18 [61] 2+1 A ■ ◦ ◦ ⋆ ◦ −0.046(26)(9)#

χQCD 15 [58] 2+1 A ■ ◦ ■ ⋆ ◦ −0.0403(44)(78)#

# Assumed that Zn.s.
A = Zs

A.
‡ The rating takes into account that the action is not fully O(a)-improved by requiring an additional

lattice spacing.
$ For this partially quenched analysis the criteria are applied to the unitary points.

Table 70: Overview of results for gqA.

nected contributions were obtained on seven ensembles, i.e., including an additional one at
a ≈ 0.087 fm and Mπ ≈ 135 MeV. The excited-state and the chiral-continuum fits were done
separately for the connected and disconnected contributions, which introduces a systematic
that is hypothesied to be small as explained in Ref. [50]. The analysis of the excited-state
contamination, discussed in Sec. 10.1.2, was done using three-state fits for the connected
contribution and two-state fits for the disconnected contributions. Isovector renormalization
factors, calculated on the lattice in the RI-SMOM scheme and converted to MS, are used for
the flavour-diagonal operators, i.e., assuming Zu−d

A,S,T = Zu,d,s
A,S,T . The chiral-continuum extrap-

olation was done keeping the leading correction terms proportional to M2
π and a, and the

leading finite-volume correction in MπL was included in the analysis of the connected contri-
butions. The continuum-limit criteria, δ(amin), can only be extracted for gsA from PNDME
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guT gdT

PNDME 20 [205] 2+1+1 C ⋆‡ ⋆ ⋆ ⋆ ◦ 0.783(27)(10) −0.205(10)(10)

ETM 19 [160] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ 0.729(22) −0.2075(75)

PNDME 18B [49] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 0.784(28)(10)# −0.204(11)(10)#

PNDME 16 [47] 2+1+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 0.792(42)#& −0.194(14)#&

PNDME 15 [45, 46] 2+1+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 0.774(66)# −0.233(28)#

Mainz 19A [206] 2+1 C ⋆ ◦ ⋆ ⋆ ◦ 0.77(4)(6) −0.19(4)(6)

JLQCD 18 [61] 2+1 A ■ ◦ ◦ ⋆ ◦ 0.85(3)(2)(7) −0.24(2)(0)(2)

gsT

PNDME 20 [205] 2+1+1 C ⋆‡ ⋆ ⋆ ⋆ ◦ −0.0022(12)

ETM 19 [160] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ −0.00268(58)

PNDME 18B [49] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ −0.0027(16)#

PNDME 15 [45, 46] 2+1+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 0.008(9)#

Mainz 19A [206] 2+1 C ⋆ ◦ ⋆ ⋆ ◦ −0.0026(73)(42)

JLQCD 18 [61] 2+1 A ■ ◦ ◦ ⋆ ◦ −0.012(16)(8)

‡ The rating takes into account that the action is not fully O(a)-improved by requiring an additional
lattice spacing.

# Assumed that Zn.s.
T = Zs

T .
& Disconnected terms omitted.

Table 71: Overview of results for gqT .

18A and is 0.3.
The PNDME 20 [205] and the more recent conference proceedings, [207] and [208], are

updates. They extend the disconnected calculations to eight ensembles, perform fits to the
sum of the connected and disconnected contributions, and also show, through explicit cal-
culations, that flavour mixing in the calculation of renormalization factors in the RI-sMOM
scheme is small, and the isovector renormalization factor is a good approximation for renor-
malizing flavour-diagonal axial and tensor charges as discussed in Sec. 10.1.3. These updates
are, however, not included in Tab. 71 as they are preliminary.

The ETM 19 [160] results for gu,d,s,cA are from a single ensemble with 2+1+1-flavour
twisted-mass fermions with a clover term at a = 0.0801(4) fm and Mπ = 139.3(7) MeV.
These are not considered for the averages as they do not satisfy the criteria for the continuum
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Figure 45: Lattice results and FLAG averages for gu,d,sA (left) and gu,d,sT (right) for the
Nf = 2 + 1 and 2 + 1 + 1-flavour calculations.

extrapolation.
The 2+1+1-flavour FLAG values for the axial charges gu,d,sA of the proton are the PNDME
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18A results given in Tab. 70:

Nf = 2 + 1 + 1 : guA = 0.777(25)(30) Ref. [50], (437)

Nf = 2 + 1 + 1 : gdA = −0.438(18)(30) Ref. [50], (438)

Nf = 2 + 1 + 1 : gsA = −0.053(8) Ref. [50]. (439)

The 2+1-flavour FLAG results from χQCD 18 [27] were obtained using the overlap-on-
domain-wall formalism. Three domain-wall ensembles with lattice spacings 0.143, 0.11 and
0.083 fm and sea-quark pion masses Mπ = 171, 337 and 302 MeV, respectively, were ana-
lyzed. In addition to the three approximately unitary points, the paper presents data for an
additional 4–5 valence-quark masses on each ensemble, i.e., partially quenched data. Sep-
arate excited-state fits were done for the connected and disconnected contributions. The
continuum, chiral and volume extrapolation to the combined unitary and nonunitary data is
made including terms proportional to both M2

π,valence and M2
π,sea, and two O(a2) discretiza-

tion terms for the two different domain-wall actions. With just three unitary points, not all
the coefficients are well constrained. The Mπ,sea-dependence is omitted and considered as a
systematic, and a prior is used for the coefficients of the a2-terms to stabilize the fit. The
continuum-limit criteria, δ(amin), could not be extracted for these results from χQCD 18.

These χQCD 18 2+1-flavour results for the proton, which supersede the χQCD 15 [58]
analysis, are

Nf = 2 + 1 : guA = 0.847(18)(32) Ref. [27], (440)

Nf = 2 + 1 : gdA = −0.407(16)(18) Ref. [27], (441)

Nf = 2 + 1 : gsA = −0.035(6)(7) Ref. [27]. (442)

The results for gu,d,sA from Mainz 19A [206] satisfy all the criteria, however, they are not
included in the averages as [206] is a conference proceeding. The JLQCD 18 [61], ETM 17C
[42] and Engelhardt 12 [209] calculations were not considered for the averages as they did
not satisfy the criteria for the continuum extrapolation. All three calculations were done at a
single lattice spacing. The JLQCD 18 calculation used overlap fermions and the Iwasaki gauge
action. They perform a chiral fit using data at four pion masses in the range 290–540 MeV.
Finite-volume corrections are assumed to be negligible since each of the two pairs of points
on different lattice volumes satisfy MπL ≥ 4. The ETM 17C calculation is based on a single
twisted-mass ensemble with Mπ = 130 MeV, a = 0.094 and a relatively small MπL = 2.98.
Engelhardt 12 [209] calculation was done on three asqtad ensembles with Mπ = 293, 356 and
495 MeV, but all at a single lattice spacing a = 0.124 fm.

Results for gsA are also presented by LHPC in Ref. [7]. However, this calculation is not
included in Tab. 70 as it has been performed on a single ensemble with a = 0.114 fm and a
heavy pion mass, Mπ ≈ 317 MeV.

Switching to the tensor charges, gu,d,sT , only one calculation, the PNDME 18B [49], qualifies
for the FLAG averaging. These 2+1+1-flavour theory results, which use the same ensembles
already discussed for gu,d,sA , supersede those in PNDME 16 [47] and PNDME 15 [45]. The
continuum-limit criteria, δ(amin), can only be extracted for gsT from PNDME 18B and is 0.5.
Again, results in the more recent conference proceedings, [207] and [208], are not discussed
here as they are preliminary.

The FLAG values for the proton in the MS scheme at 2 GeV, which remain the same as
in FLAG 19 and FLAG 21, are:
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Nf = 2 + 1 + 1 : guT = 0.784(28)(10) Ref. [49], (443)

Nf = 2 + 1 + 1 : gdT = −0.204(11)(10) Ref. [49], (444)

Nf = 2 + 1 + 1 : gsT = −0.0027(16) Ref. [49]. (445)

The ensembles and the analysis strategy used in PNDME 18B is the same as described
in PNDME 18A for gu,d,sA . The only difference for the tensor charges was that a one-state
(constant) fit was used for the disconnected contributions as the data did not show signif-
icant excited-state contamination. The isovector renormalization factors, used for all three
flavour-diagonal tensor operators, were calculated on the lattice in the RI-SMOM scheme and
converted to MS at 2 GeV using 2-loop perturbation theory [210]. The proceeding [208] ex-
tends the calculation to eight ensembles and reports that flavour mixing in the calculation of
renormalization factors is small, and the isovector renormalization factor, which was used for
renormalizing the flavour-diagonal tensor charges in PNDME 18B, is a good approximation.

The ETM 19 [160] results for gu,d,s,cT are from a single ensemble with 2+1+1-flavour
twisted-mass fermions with a clover term at a = 0.0801(4) fm and Mπ = 139.3(7) MeV. It was
not considered for the final averages because it did not satisfy the criteria for the continuum
extrapolation. The same applies to the JLQCD 18 [61] and ETM 17 [43] calculations. The
Mainz 19A [206] results with 2+1-flavour ensembles of clover fermions are not included in the
averages as Ref. [206] is a conference proceeding.

10.4.2 Results for gu,d,sS from direct and hybrid calculations of the matrix ele-
ments

The sigma terms σq = mq⟨N |q̄q|N⟩ = mqg
q
S or the quark-mass fractions fTq = σq/MN

are normally computed rather than gqS . These combinations have the advantage of being
renormalization group invariant in the continuum, and this holds on the lattice for actions
with good chiral properties, see Sec. 10.1.3 for a discussion. In order to aid comparison with
phenomenological estimates, e.g., from π-N scattering [214–216], the light-quark sigma terms
are usually added to give the πN sigma term, σπN = σu + σd. The direct evaluation of the
sigma terms involves the calculation of the corresponding three-point correlation functions
for different source-sink separations τ . For σπN there are both connected and disconnected
contributions, while for most lattice fermion formulations only disconnected contributions are
needed for σs. The techniques typically employed lead to the availability of a wider range of
τ for the disconnected contributions compared to the connected ones (both, however, suffer
from signal-to-noise problems for large τ , as discussed in Sec. 10.1) and we only comment on
the range of τ computed for the latter in the following.

Recent Nf = 2 + 1 and Nf = 2 + 1 + 1 results for σπN and σs from the direct approach
are compiled in Tab. 72. In the following, we summarize new results that have appeared
since the last FLAG report and previous studies that enter the averages. Details of ETM
19 [160] and JLQCD 18 [61] can be found in the FLAG 21 report. As there have been no new
Nf = 2 studies of the sigma terms since the introduction of the section on nucleon matrix
elements [36, 40], we also refer the reader to the previous report for a discussion of these results
and other early three- and four-flavour works with at least one red square [56, 60, 209].
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σπN [MeV] σs [MeV]

PNDME 21 [106] 2+1+1 A ◦‡ ⋆ ⋆ a/− ◦ 59.6(7.4) −
ETM 19 [160] 2+1+1 A ■ ◦ ⋆ na/na ◦ 41.6(3.8) 45.6(6.2)

Mainz 23 [211] 2+1 A ⋆b ⋆ ⋆ ⋆/⋆ ◦ 43.7(3.6) 28.6(9.3)

JLQCD 18 [61] 2+1 A ■ ◦ ◦ na/na ◦ 26(3)(5)(2) 17(18)(9)

χQCD 15A [57] 2+1 A ◦ ⋆ ⋆ na/na ◦ 45.9(7.4)(2.8)$ 40.2(11.7)(3.5)$

MILC 12C [212] 2+1+1 A ⋆ ⋆ ⋆ −/◦ ◦ − 0.44(8)(5)×ms
¶§

MILC 12C [212] 2+1 A ⋆ ◦ ⋆ −/◦ ◦ − 0.637(55)(74)×ms
¶§

MILC 09D [213] 2+1 A ⋆ ◦ ⋆ −/na ◦ − 59(6)(8)§

The renormalization criteria is given for σπN (first) and σs (second). The label ’na’ indicates that no renor-
malization is required.

a Mixing between quark flavours is found to be small and is neglected.
‡ The rating takes into account that the action is not fully O(a)-improved by requiring an additional

lattice spacing.

b The rating takes into account that the scalar current is not fully O(a)-improved by requiring an
additional lattice spacing. The gluonic operator that appears in the O(a) improvement for Wilson
fermions is not implemented. The effect of this term is expected to be small.

$ For this partially quenched analysis the criteria are applied to the unitary points.
§ This study employs a hybrid method, see Ref. [213].
¶ The matrix element ⟨N |s̄s|N⟩ at the scale µ = 2 GeV in the MS scheme is computed.

Table 72: Overview of results for σπN and σs from the direct approach (above) and σs from
the hybrid approach (below).

Starting with Nf = 2 + 1 + 1, there is a new study from PNDME [106]. This calcula-
tion is based on a mixed-action set-up of O(a)-improved Wilson valence fermions on top of
staggered (HISQ) gauge ensembles generated by the MILC collaboration. Six ensembles are
utilized with lattice spacings, a ≈ 0.12, 0.09 and 0.06 fm and pion masses Mπ ≈ 315, 230
and 138 MeV. The two-point and three-point correlation functions are fitted simultaneously
including contributions from four and three states, respectively, where wide-width priors are
used for the excited-state masses entering the fits. Four to five values of the source-sink sep-
aration are utilized with the largest τ ≈ 1.5 fm. The fitting procedure is repeated using a
narrow-width prior for the first excited state which is set to the energy of the lowest multi-
hadron state (Nπ or Nππ, see Sec. 10.1.2). This choice is motivated by a χPT analysis [106],

31

http://arxiv.org/abs/2411.04268


Y. Aoki et al. FLAG Review 2024 2411.04268

which indicates that excited-state contributions arising from low-lying Nπ and Nππ states
can be significant on close-to-physical pion mass ensembles. In particular, there is a signif-
icant enhancement of the disconnected contribution due to the large QCD condensate. The
quality of the fits is, however, similar for both a narrow- and wide-width prior for the first
excited state. Combined continuum- and chiral-limit fits are performed with a parameteri-
zation composed of a term linear in the lattice spacing and the NNLO SU(2) baryon χPT
expression for the pion-mass dependence. Finite-volume effects are not resolved. The result
from the narrow-width first-excited-state prior analysis is chosen as the final value, while the
wide-width prior analysis (which has a first-excited-state energy significantly above the lowest
Nπ or Nππ noninteracting level) gives σπN ≈ 42 MeV.

Moving on to the Nf = 2+1 results, Mainz 23 [211] is a new study employing 16 nonper-
turbatively O(a)-improved Wilson fermion ensembles from the CLS consortium. The flavour
average of the light- and strange-quark mass is held constant in the simulations as the pion
mass varies in the range 350 ≳ Mπ ≳ 130 MeV. Four lattice spacings are realized, with
a = 0.050–0.086 fm. The connected three-point functions are computed for a large number
of source-sink separations (between 9 and 17 values of τ , depending on the ensemble) where
the largest τ = 1.4–1.5 fm. The ground-state matrix elements are extracted employing two
analysis strategies: one employing the summation method (with only the ground-state terms)
and the other performing two-state fits to correlator ratios. For the latter, the mass gap to
the first excited state is set with a prior equal to twice the pion mass. As both the light-
and strange-quark masses vary in the simulations, σπN and σs are fitted simultaneously with
the quark-mass dependence parameterized by SU(3) O(p3) covariant baryon χPT. Combined
continuum, chiral and finite-volume fits are performed, where cuts are made on the data set
entering the fit which depend on the lattice spacing, finite volume and pion mass. Akaike-
information-criterion [139] averages of the results are computed for the two analysis choices
separately. The two results are then combined to form the final values.

The χQCD 15A [57] study also qualifies for global averaging. In this mixed-action study,
three RBC/UKQCD Nf = 2 + 1 domain-wall ensembles are analyzed comprising two lattice
spacings, a = 0.08 fm with Mπ,sea = 300 MeV and a = 0.11 fm with Mπ,sea = 330 MeV
and 139 MeV. Overlap fermions are employed with a number of nonunitary valence-quark
masses. The connected three-point functions are measured with three values of τ in the range
0.9–1.4 fm. A combined chiral, continuum and volume extrapolation is performed for all
data with Mπ < 350 MeV. The leading-order expressions are taken for the lattice-spacing
and volume dependence while partially quenched SU(2) HBχPT up to M3

π-terms models the
chiral behaviour for σπN . The strange-quark sigma term has a milder dependence on the pion
mass and only the leading-order quadratic terms are included in this case.

MILC has also computed σs using a hybrid method [213] which makes use of the Feynman-
Hellmann (FH) theorem and involves evaluating the nucleon matrix element ⟨N |

∫
d4x s̄s|N⟩.5

This method is applied in MILC 09D [213] to the Nf = 2 + 1 asqtad ensembles with lattice
spacings a = 0.06, 0.09, 0.12 fm and values of Mπ ranging down to 224 MeV. A continuum and
chiral extrapolation is performed including terms linear in the light-quark mass and quadratic
in a. As the coefficient of the discretization term is poorly determined, a Bayesian prior is
used, with a width corresponding to a 10% discretization effect between the continuum limit

5Note that in the direct method the matrix element ⟨N |
∫
d3x s̄s|N⟩, involving the spatial-volume sum, is

evaluated for a fixed timeslice.
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and the coarsest lattice spacing.6 A similar updated analysis is presented in MILC 12C [212],
with an improved evaluation of ⟨N |

∫
d4x s̄s|N⟩ on a subset of the Nf = 2 + 1 asqtad ensem-

bles. The study is also extended to HISQ Nf = 2 + 1 + 1 ensembles comprising four lattice
spacings with a = 0.06–0.15 fm and a minimum pion mass of 131 MeV. Results are presented
for gsS = ⟨N |s̄s|N⟩ (in the MS scheme at 2 GeV) rather than for σs. The scalar matrix
element is renormalized for both three and four flavours using the 2-loop factor for the asqtad
action [217]. The error incurred by applying the same factor to the HISQ results is expected
to be small.7

Both MILC 09D and MILC 12C achieve green tags for all the criteria, see Tab. 72. As
the same set of asqtad ensembles is utilized in both studies we take MILC 12C as superseding
MILC 09D for the three-flavour case. The global averaging is discussed in Sec. 10.4.4.

10.4.3 Results for gu,d,sS using the Feynman-Hellmann theorem

An alternative approach for accessing the sigma terms is to determine the slope of the nucleon
mass as a function of the quark masses, or equivalently, the squared pseudoscalar meson
masses. The Feynman-Hellman (FH) theorem gives

σπN = mu
∂MN

∂mu
+md

∂MN

∂md
≈M2

π

∂MN

∂M2
π

, σs = ms
∂MN

∂ms
≈M2

s̄s

∂MN

∂M2
s̄s

, (446)

where the fictitious s̄s meson has a mass squared M2
s̄s = 2M2

K −M2
π . In principle this is a

straightforward method as the nucleon mass can be extracted from fits to two-point correla-
tion functions, and a further fit to MN as a function of Mπ (and also MK for σs) provides
the slope. Nonetheless, this approach presents its own challenges: a functional form for the
chiral behaviour of the nucleon mass is needed, and while baryonic χPT (BχPT) is the nat-
ural choice, the convergence properties of the different formulations are not well established.
Results are sensitive to the formulation chosen and the order of the expansion employed. If
there is an insufficient number of data points when implementing higher-order terms, the co-
efficients are sometimes fixed using additional input, e.g., from analyses of experimental data.
This may influence the slope extracted. Simulations with pion masses close to or bracketing
the physical point can alleviate these difficulties. In some studies the nucleon mass is used to
set the lattice spacing. This naturally forces the fit to reproduce the physical nucleon mass
at the physical point and may affect the extracted slope. Note that, if the nucleon mass is
fitted as a function of the pion and kaon masses, the dependence of the meson masses on the
quark masses also, in principle, needs to be considered in order to extract the sigma terms.

An overview of recent three- and four-flavour determinations of σπN and σs is given in
Tab. 73. All the results are eligible for global averaging, with RQCD 22 [221] being the
sole new work. For details of earlier works (published before 2014) with at least one red
square [38, 60, 132, 227–229] and all Nf = 2 [32, 59] works we refer the reader to the FLAG 21
report. Note that the renormalization criterion is not included in Tab. 73 as renormalization is
not normally required when computing the sigma terms in the Feynman-Hellmann approach.8

At present, a rating indicating control over excited-state contamination is also not considered
since a wide range of source-sink separations are available for nucleon two-point functions

6This is consistent with discretization effects observed in other quantities at a = 0.12 fm.
7At least at 1-loop the renormalization factors for HISQ and asqtad are very similar, cf. Ref. [218].
8An exception to this is when clover fermions are employed. In this case one must take care of the mixing

between quark flavours when renormalizing the quark masses that appear in Eq. (446).
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σπN [MeV] σs [MeV]

BMW 20A [219] 1+1+1+1 P ⋆‡ ⋆ ⋆ 0.0398(32)(44)×mN
† 0.0577(46)(33)×mN

†

ETM 14A [220] 2+1+1 A ⋆ ◦ ◦ 64.9(1.5)(13.2)△ −

RQCD 22 [221] 2+1 A ⋆ ⋆ ⋆ 43.9(4.7) 16(5868)

BMW 15 [222] 2+1 A ⋆‡ ⋆ ⋆ 38(3)(3) 105(41)(37)

Junnarkar 13 [223] 2+1 A ◦ ◦ ◦ − 48(10)(15)

BMW 11A [224] 2+1 A ◦‡ ⋆ ◦ 39(4)(187 ) 67(27)(5547)

△ Two results for σπN are quoted arising from different fit ansätze to the nucleon mass. The systematic
error is the same as in Ref. [225] for a combined Nf = 2 and Nf = 2 + 1 + 1 analysis [226].

‡ The rating takes into account that the action is not fully O(a) improved by requiring an additional
lattice spacing.

† The quark fractions fTud = fTu + fTd = σπN/mN and fTs = σs/mN are computed.

Table 73: Overview of results for σπN and σs from the Feynman-Hellmann approach.

and ground-state dominance is normally achieved. This issue may be revisited in the future
as statistical precision improves and this systematic is further investigated.

We first summarize the determinations of σπN . BMW have performed a Nf = 1+1+1+1
study BMW 20A [219] which follows a two-step analysis procedure: the dependence of the
nucleon mass on the pion and kaon masses is determined on HEX-smeared clover ensembles
with a = 0.06–0.1 fm and pion masses in the range Mπ = 195–420 MeV. The meson masses
as a function of the quark masses are evaluated on stout-staggered ensembles with a similar
range in a and quark masses which bracket their physical values. As [219] is a preprint, their
results (for both sigma terms) are not considered for global averaging.

Regarding Nf = 2 + 1 + 1, there is only one recent study. In ETM 14A [220], fits are
performed to the nucleon mass utilizing SU(2) χPT for data with Mπ ≥ 213 MeV as part
of an analysis to set the lattice spacing. The expansion is considered to O(p3) and O(p4),
with two and three of the coefficients as free parameters, respectively. The difference between
the two fits is taken as the systematic error. No discernable discretization or finite-volume
effects are observed where the lattice spacing is varied over the range a = 0.06–0.09 fm and
the spatial volumes cover MπL = 3.4 up to MπL > 5. The results are unchanged when a
near-physical-point Nf = 2 ensemble is added to the analysis in Ref. [225].

Turning to Nf = 2 + 1, RQCD 22 [221] utilizes 49 nonperturbatively O(a)-improved
Wilson fermion CLS ensembles, with six lattice spacings in the range 0.04 ≤ a ≤ 0.1 fm and
Mπ ∼ 130–410 MeV. The ensembles lie on three trajectories in the quark-mass plane, two
of which meet at the physical point. Simultaneous fits to the bayon octet are performed,
employing SU(3) O(p3) covariant baryon χPT, heavy baryon χPT and Taylor-expansion fit
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forms for the quark-mass dependence. The final values at the physical point in the continuum
and infinite-volume limits are obtained by performing an Akaike-information-criterion [139]
average of the covariant baryon χPT fits to various reduced data sets. These fits include
finite-volume terms to O(p3) as well as terms quadratic in the lattice spacing in order to
model cut-off effects.

In BMW 11A [224], stout-smeared tree-level clover fermions are employed on 15 ensem-
bles with simulation parameters encompassing a = 0.06–0.12 fm, Mπ ∼ 190–550 MeV and
MπL>∼ 4. Taylor, Padé and covariant SU(3) BχPT fit forms are considered. Due to the use
of smeared gauge links, discretization effects are found to be mild even though the fermion
action is not fully O(a)-improved. Fits are performed including an O(a) or O(a2) term and
also without a lattice-spacing-dependent term. Finite-volume effects were assessed to be small
in an earlier work [230]. The final results are computed considering all combinations of the
fit ansatz weighted by the quality of the fit. In BMW 15 [222], a more extensive analysis on
47 ensembles is presented for HEX-smeared clover fermions involving five lattice spacings and
pion masses reaching down to 120 MeV. Bracketing the physical point reduces the reliance on
a chiral extrapolation. Joint continuum, chiral and infinite-volume extrapolations are carried
out for a number of fit parameterizations with the final results determined via the Akaike-
information-criterion procedure. Although only σπN is accessible in the FH approach in the
isospin limit, the individual quark fractions fTq = σq/MN for q = u, d for the proton and the
neutron are also quoted in BMW 15, using isospin relations.9

With one exception, all of the above studies have also determined the strange-quark
sigma term, while Junnarkar 13 [223] only presents results for σs. This quantity is difficult
to access via the Feynman-Hellmann method since in most simulations the physical point
is approached by varying the light-quark mass, keeping ms approximately constant. While
additional ensembles can be generated, it is hard to resolve a small slope with respect to ms.
Such problems are illustrated by the large uncertainties in the results from BMW 11A and
BMW 15. Alternative approaches have been pursued where the physical point is approached
along a trajectory keeping the average of the light- and strange-quark masses fixed [228],
and where quark-mass reweighting is applied [60]. One can also fit to the whole baryon
octet and apply SU(3) flavour-symmetry constraints as investigated in RQCD 22 [221] and
Refs. [224, 227–229].

Junnarkar 13 [223] is a mixed-action study which utilizes domain-wall valence fermions on
MILC Nf = 2+1 asqtad ensembles. The derivative ∂MN/∂ms is determined from simulations
above and below the physical strange-quark mass for Mπ around 240–675 MeV. The resulting
values of σs are extrapolated quadratically in Mπ. The quark fraction fTs = σs/MN exhibits
a milder pion-mass dependence and extrapolations of this quantity were also performed using
ansätze linear and quadratic in Mπ. A weighted average of all three fits was used to form the
final result. Two lattice spacings were analyzed, with a around 0.09 fm and 0.12 fm, however,
discretization effects could not be resolved.

The global averaging of the results is discussed in the next section.

10.4.4 Summary of Results for gu,d,sS

We consider computing global averages of results determined via the direct, hybrid and
Feynman-Hellmann (FH) methods. Beginning with σπN , Tabs. 72 and 73 show that for

9These isospin relations were also derived in Ref. [231].
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Nf = 2 + 1 + 1 ETM 14A (FH) and PNDME 21 (direct) satisfy the selection criteria. The
FLAG average for the four-flavour case reads

Nf = 2 + 1 + 1 : σπN = 60.9(6.5) MeV Refs. [106, 220]. (447)

We remark that although the Nf = 1 + 1 + 1 + 1 BMW 20A study [219] also satisfies the
criteria, it is not considered for averaging as it is a preprint. For Nf = 2 + 1 we form an
average from the BMW 11A (FH), BMW 15 (FH), χQCD 15A (direct), RQCD 22 (FH) and
Mainz 23 (direct) results, yielding

Nf = 2 + 1 : σπN = 42.2(2.4) MeV Refs. [57, 211, 221, 222, 224]. (448)

Note that both BMW results are included as they were obtained on independent sets of
ensembles (employing different fermion actions). The RQCD 22 and Mainz 23 studies both
utilize CLS Nf = 2 + 1 ensembles (the latter utilizes a subset of the ensembles employed by
the former). To be conservative we take the statistical errors for these two studies to be 100%
correlated. The FLAG result for Nf = 2 can be found in the FLAG 21 report [1].

Moving on to σs and the calculations detailed in Tab. 72, for Nf = 2+1+1 MILC 12C (hy-
brid) and BMW 20A satisfy the quality criteria, however, the latter is a preprint and is not
considered for averaging. In order to convert the result for ⟨N |s̄s|N⟩ given in MILC 12C to a
value for σs, we multiply by the appropriate FLAG average for ms given in Eq. (35) of FLAG
19. This gives our result for four flavours, which is unchanged since the last FLAG report,

Nf = 2 + 1 + 1 : σs = 41.0(8.8) MeV Ref. [212]. (449)

For Nf = 2+1 we perform a weighted average of BMW 11A (FH), MILC 12C (hybrid), Jun-
narkar 13 (FH), BMW 15 (FH), χQCD 15A (direct), RQCD 22 (FH) and Mainz 23 (direct).
MILC 09D [213] also passes the FLAG selection rules, however, this calculation is superseded
by MILC 12C. As for Eq. (449), the strangeness scalar matrix element determined in the lat-
ter study is multiplied by the three-flavour FLAG average for ms given in Eq. (33) of FLAG
19. There are correlations between the MILC 12C and Junnarkar 13 results as there is some
overlap between the sets of asqtad ensembles used in both cases. We take the statistical errors
for these two studies to be 100% correlated and, similarly, for the Mainz 23 and RQCD 22
studies (as for σπN ). The global average is

Nf = 2 + 1 : σs = 44.9(6.4) MeV Refs. [57, 211, 212, 221–224], (450)

where the error has been increased by around 10% because χ2/dof = 1.2317 for the weighted
average. For all the other averages presented above, the χ2/dof is less than one and no
rescaling of the error is applied. There are no Nf = 2 studies of σs which pass the FLAG
quality criteria, see the FLAG 21 report for further details.

We remark that it was not possible to determine δ(amin) for the above works based on
the information provided.

All the results for σπN and σs are displayed in Figs. 46 and 47 along with the averages
given above. Note that where fTud

= fTu + fTd
or fTs is quoted in Tabs. 72 and 73, we

multiply by the experimental proton mass in order to include the results in the figures. For
σπN , the averages are consistent with the respective FLAG 21 values, however, the errors
are significantly reduced. For four flavours, this is due to the PNDME 21 direct result,
which dominates the average. The results that enter the average for three flavours, are all
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Figure 46: Lattice results and FLAG averages for the nucleon sigma term, σπN , for the
Nf = 2 + 1, and 2 + 1 + 1 flavour calculations. Determinations via the direct approach are
indicated by squares and the Feynman-Hellmann method by triangles. Results from recent
analyses of π-N scattering [214–216, 232, 233] (circles) are shown for comparison. Note that
the charged pion is used to define the isospin limit in these phenomenological analyses, while
the neutral pion with Mπ ∼ 135 MeV is usually used to define the physical point in lattice
simulations. We adjust the results to be consistent with the latter, applying the correction
for the different conventions determined in Ref. [233].

consistent with each other and the addition of the RQCD 22 and Mainz 23 studies reduces the
uncertainty. The latter is the most precise result to date which passes all the FLAG quality
criteria. Notably, there is now a 2.7σ difference between the Nf = 2 + 1 and Nf = 2 + 1 + 1
FLAG averages. This is unlikely to be due to the inclusion of charm quarks in the sea. The
control of excited-state contributions remains an issue. In particular, the PNDME 21 study
utilizes a narrow-width prior in their fitting analysis set to the lowest multi-hadron (Nπ
or Nππ) excited-state energy. This is motivated by a χPT analysis which indicates that
these multi-hadron contributions are significant at physical pion masses. If this constraint is
relaxed then a sigma term of around 42 MeV is obtained. Mainz 23 also find an increase in the
sigma term if such a prior is included in the fitting procedure; however, the shift is much less
pronounced. Although progress is being made in terms of improving the statistical precision
of the correlation functions and realising more source-sink separations (with the maximum
separation currently around 1.5 fm), more work needs to be done in order to control excited-
state contributions at close-to-physical pion masses. We caution the reader that as more
results for both σπN and σs become available the averages may change.

Also shown for comparison in the figures are determinations of σπN from recent analyses
of π-N scattering [214–216, 232, 233]. The Nf = 2+1+1 lattice average is in agreement with
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Figure 47: Lattice results and FLAG averages for σs for the Nf = 2 + 1, and 2 + 1 + 1
flavour calculations. Determinations via the direct approach are indicated by squares, the
Feynman-Hellmann method by triangles and the hybrid approach by circles.

Hoferichter et al. [233] (Hoferichter 23 in Fig. 46), while there is some tension, at the level of
around three standard deviations, with the lattice average for Nf = 2 + 1.10

For the strangeness sigma term, the four-flavour average is unchanged from the previous
FLAG report, while the three-flavour average has decreased by 1σ and there is a small reduc-
tion in the error. There is a slight tension between the Mainz 23 and MILC 12C Nf = 2 + 1
results, however, both FLAG averages are consistent with each other.

Finally we remark that, by exploiting the heavy-quark limit, the light- and strange-quark
sigma terms can be used to estimate σq for the charm, bottom and top quarks [195–197]. The
resulting estimate for the charm quark, see, e.g., the RQCD 16 Nf = 2 analysis of Ref. [36]
that reports fTc = 0.075(4) or σc = 70(4) MeV, is consistent with the direct determinations
of ETM 19 [160] for Nf = 2 + 1 + 1 of σc = 107(22) MeV, ETM 16A [40] for Nf = 2 of
σc = 79(21)(128 ) MeV and χQCD 13A [56] for Nf = 2+1 of σc = 94(31) MeV. BMW in BMW
20A [219] employing the Feynman-Hellmann approach obtain fTc = σc/mN = 0.0734(45)(55)
for Nf = 1 + 1 + 1 + 1. MILC in MILC 12C [212] find ⟨N |c̄c|N⟩ = 0.056(27) in the MS
scheme at a scale of 2 GeV for Nf = 2 + 1 + 1 via the hybrid method. Considering the large
uncertainty, this is consistent with the other results once multiplied by the charm-quark mass.

10We adjust the result of Ref. [233] such that it is consistent with defining the isospin limit using the mass
of the neutral pion.
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10.5 Isovector second Mellin moments ⟨x⟩u−d, ⟨x⟩∆u−∆d and ⟨x⟩δu−δd

This section introduces the basics of the calculation of the momentum fraction carried by the
quarks and the transversity and helicity moments in the isovector channel. These moments
of spin-independent (i.e., unpolarized), q = q↑ + q↓, helicity (i.e., polarized), ∆q = q↑ − q↓,
and transversity, δq = q⊤ + q⊥ distributions, are defined as

⟨x⟩q =

∫ 1

0
x [q(x) + q(x)] dx , (451)

⟨x⟩∆q =

∫ 1

0
x [∆q(x) + ∆q(x)] dx , (452)

⟨x⟩δq =

∫ 1

0
x [δq(x) + δq(x)] dx , (453)

where q↑(↓) corresponds to quarks with helicity aligned (anti-aligned) with that of a longitudi-
nally polarized target, and q⊤(⊥) corresponds to quarks with spin aligned (anti-aligned) with
that of a transversely polarized target. These alignments are shown pictorially in Fig. 48.

Momentum fraction (unpolarized)  	 𝑥 !

Helicity moment (polarized) 𝑥 "!

Transversity moment (polarized)					 𝑥 #!

+

−

−

Figure 48: A pictorial description of the three moments showing the direction of the spin of
the quark (red arrow) with respect to the nucleon momentum (green arrow).

At leading twist, these moments can be extracted from the forward matrix elements of
one-derivative vector, axial-vector and tensor operators within ground-state nucleons. The
complete set of the relevant twist-two operators are

Oµν
V a = qγ{µ

←→
D ν}τaq ,

Oµν
Aa = qγ{µ

←→
D ν}γ5τaq ,

Oµνρ
Ta = qσ[µ{ν]←→D ρ}τaq , (454)

where q = {u, d} is the isodoublet of light quarks and σµν = (γµγν −γνγµ)/2. The derivative
←→
D ν ≡ 1

2(
−→
Dν −

←−
Dν) consists of four terms defined in Ref. [234]. Lorentz indices within { } in

Eq. (454) are symmetrized and within [ ] are antisymmetrized. It is also implicit that, where
relevant, the traceless part of the above operators is taken.

The methodology for nonperturbative renormalization of these operators is very similar
to that for the charges. Details of these twist-two operators and their renormalization can be
found in Refs. [107] and [87].
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In numerical calculations, it is typical to set the spin of the nucleon in a given direction.
Choosing the spin to be in the “3” direction and restricting to the isovector case, τa = τ3,
the explicit operators become

O44
V 3 = q(γ4

←→
D 4 − 1

3
γ ·
←→
D )τ3q , (455)

O34
A3 = qγ{3

←→
D 4}γ5τ3q , (456)

O124
T 3 = qσ[1{2]←→D 4}τ3q . (457)

The isovector moments are then obtained from their forward matrix elements within the
nucleon ground state using the following relations:

⟨0|O44
V 3 |0⟩ = −MN ⟨x⟩u−d , (458)

⟨0|O34
A3 |0⟩ = − iMN

2
⟨x⟩∆u−∆d , (459)

⟨0|O124
T 3 |0⟩ = − iMN

2
⟨x⟩δu−δd . (460)

10.5.1 Results for the isovector moments ⟨x⟩u−d, ⟨x⟩∆u−∆d and ⟨x⟩δu−δd

A summary of results for these three moments is given in Tabs. 74 and 75 and the values
including the FLAG averages are shown in Fig. 49. Results from Nf = 2 simulations and
publications prior to 2014 have been included as this is the first review of these quantities.
For the momentum fraction and helicity moment, we have also included phenomenological
estimates. Lattice values for the momentum fraction are consistent with phenomenology but
have larger errors. Results for the helicity moment, ⟨x⟩∆u−∆d, are consistent and have similar
uncertainties. Lattice results for the transversity moment are a prediction.

We discuss results for these three moments together as the methodology for their calcu-
lations and the analysis is the same, and the systematics are similar. All results presented in
this section are in the MS scheme at 2 GeV.

For the 2+1+1-theory, the PNDME 20A and ETM 22 results in [174, 234] qualify for
the averages. The PNDME 20A results are from nine HISQ ensembles analyzed using clover
fermions. The operators are renormalized nonperturbatively using the RI’-MOM scheme, and
the chiral-continuum-finite-volume extrapolation is done keeping the leading-order corrections
in each of the three variables. Analyses of excited-state contamination are done using three
strategies that differ in the selection of the first excited-state mass. The final results are
from a three-state fit to the three-point function with the spectrum taken from the two-
point function, i.e., assuming no enhanced contribution from multihadron excited states. An
additional systematic uncertainty is assigned to cover the spread of these three estimates.

The ETM collaboration has presented new results from three ensembles with 2+1+1-
flavour twisted-mass fermions with close-to-physical pion masses at a = 0.057, 0.069 and
0.80 fm in [174]. These results supersede those in [235, 236] based on the single ensem-
ble at a = 0.080 fm for the momentum fraction and the transversity moment. To control
excited-state contamination, they compare results from the plateau, summation and two-
state methods with the final values taken from the two-state fit. Operators are renormalized
nonperturbatively via the RI’-MOM scheme supplemented by perturbative subtraction of lat-
tice artefacts. The continuum extrapolation, which keeps the leading correction ∝ a2, shows
a significant slope for ⟨x⟩u−d, which reduces the continuum-limit value.
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⟨x⟩u−d ⟨x⟩∆u−∆d

ETM 22 [174] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ◦ 0.126(32)

PNDME 20A [234] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 0.173(14)(07) 0.213(15)(22)

ETM 20C [235] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ 0.171(18)

ETM 19A [236] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ 0.178(16) 0.193(18)

Mainz 24 [161] 2+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 0.153(15)(10) 0.207(15)(06)

LHPC 24 [237] 2+1 A ■
‡ ⋆ ⋆ ⋆ ◦ 0.200(17) 0.213(16)

NME 21A [238] 2+1 C ⋆‡ ⋆ ⋆ ⋆ ◦ 0.156(12)(20) 0.185(12)(20)

NME 20 [239] 2+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 0.155(17)(20) 0.183(14)(20)

Mainz 19 [87] 2+1 A ⋆‡ ◦ ⋆ ⋆ ◦ 0.180(25)(146 ) 0.221(25)(100 )

χQCD 18A [240] 2+1 A ◦ ⋆ ⋆ ⋆ ◦ 0.151(28)(29)

LHPC 12A [170] 2+1 A ■
‡ ⋆ ⋆ ⋆ ◦ 0.140(21)

LHPC 10 [68] 2+1 A ■
‡ ◦ ■ ⋆ ■ 0.1758(20) 0.1972(55)

RBC/UKQCD 10D [55] 2+1 A ■ ■ ◦ ⋆ ■ 0.140–0.237 0.180–0.279

RQCD 18 [241] 2 A ◦‡ ⋆ ⋆ ⋆ ■ 0.195(7)(15) 0.271(14)(16)

ETM 17C [42] 2 A ■ ◦ ◦ ⋆ ◦ 0.194(9)(11)

ETM 15D [39] 2 A ■ ◦ ◦ ⋆ ◦ 0.208(24) 0.229(30)

RQCD 14A [242] 2 A ◦‡ ⋆ ⋆ ⋆ ■ 0.217(9)

‡ The rating takes into account that the moments are not fully O(a)-improved by requiring an additional
lattice spacing.

Table 74: Overview of results for ⟨x⟩u−d and ⟨x⟩∆u−∆d. The Nf = 2 results and publications
prior to 2014 are included as this is the first review of these quantities.

When determining the final results to quote for the 2 + 1 + 1 theory, we note the large
difference between the results from Refs. [174, 234] for the momentum fraction. Our conser-
vative approach is to construct the interval defined by the PNDME 20A value plus error and
the ETM 22 value, i.e., 0.126–0.189, and then take the mean of the interval for the central
value and half the spread for the error as shown in Fig. 49. For the transversity moment we
perform the FLAG averaging assuming no correlations between the two calculations. For the
helicity fraction we quote the PNDME 20A [234] values. The values of δ(amin) for the three
moments for the PNDME 20A calculation [234] are 0.6, 0.3 and 0.13, and those for ETM 22
are roughly 0.8 (momentum fraction) and 0.0 (transversity). The FLAG averages are
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⟨x⟩δu−δd

ETM 22 [174] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ◦ 0.168(44)

PNDME 20A [234] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 0.208(19)(24)

ETM 19A [236] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ 0.204(23)

Mainz 24 [161] 2+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 0.195(17)(15)

LHPC 24 [237] 2+1 A ■
‡ ⋆ ⋆ ⋆ ◦ 0.219(21)

NME 21A [238] 2+1 C ⋆‡ ⋆ ⋆ ⋆ ◦ 0.209(15)(20)

NME 20 [239] 2+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 0.220(18)(20)

Mainz 19 [87] 2+1 A ⋆‡ ◦ ⋆ ⋆ ◦ 0.212(32)(
(20
10 )

RQCD 18 [241] 2 A ◦‡ ⋆ ⋆ ⋆ ■ 0.266(8)(4)

ETM 15D [39] 2 A ■ ◦ ◦ ⋆ ◦ 0.306(29)

‡ The rating takes into account that the moments are not fully O(a)-improved by requiring an additional
lattice spacing.

Table 75: Overview of results for ⟨x⟩δu−δd. The Nf = 2 results and publications prior to 2014
are included as this is the first review of these quantities.

Nf = 2 + 1 + 1 : ⟨x⟩u−d = 0.158(32) Refs. [174, 234], (461)

Nf = 2 + 1 + 1 : ⟨x⟩∆u−∆d = 0.213(27) Ref. [234], (462)

Nf = 2 + 1 + 1 : ⟨x⟩δu−δd = 0.195(25) Refs. [174, 234]. (463)

Five calculations qualify for averages for the 2+1-flavour theory: the Mainz [87, 161], the
NME [238, 239], and χQCD [240]. Of these, the Mainz 24 [161] supercedes the Mainz 19 [87],
and while the NME 21A [238] is an update of NME 20 [239], it is a conference proceeding.

The Mainz 24 results are based on fifteen Nf = 2 + 1 ensembles produced by the CLS
collaboration covering the ranges 0.05 ≤ a ≤ 0.09 fm and 130 ≤Mπ ≤ 360 MeV. A two-state
summation method is used to control excited-state contamination. In the continuum-chiral-
finite-volume extrapolation, leading-order corrections are used for the continuum and finite-
volume corrections and up to NNLO results from SU(2) baryon chiral perturbation theory
for the chiral part.

The NME 20 [239] results are based on seven Nf = 2 + 1 clover ensembles produced
by the JLab/W&M/LANL/MIT collaborations. They cover the range 0.07 ≤ a ≤ 0.13 fm
and 170 ≤ Mπ ≤ 280 MeV. The analysis methodology is the same as in Ref. [234] already
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Figure 49: Lattice-QCD results for the second Mellin moments ⟨x⟩u−d, ⟨x⟩∆u−∆d and
⟨x⟩δu−δd. Results from Nf = 2 simulations and publications prior to 2014 have been in-
cluded as this is the first review of these quantities. For the momentum-fraction and helicity
moment, we have also included phenomenological estimates [243–253].

discussed above.
The χQCD [240] calculation uses four domain-wall ensembles that have been generated

by the RBC/UKQCD collaboration that cover the range 0.08 ≤ a ≤ 0.14 fm and 139 ≤
Mπ ≤ 330 MeV. A number of values of overlap-valence-quark masses, in addition to those
close to the unitary point M sea

π = Mvalence
π , are used. The renormalization is carried out

nonperturbatively. The continuum-chiral-finite-volume extrapolation is carried out using the
leading corrections plus terms accounting for partial quenching, i.e., the leading terms in the
difference M sea

π −Mvalence
π .

The three older calculations, LHPC 12A [170], LHPC 10 [68] and RBC/UKQCD [55], do
not meet the criteria of control over the continuum limit. Similarly, the Nf = 2 calculations
fail to satisfy one or more of the FLAG criteria.

The 2+1-flavour FLAG averages for the momentum fraction, ⟨x⟩u−d, are constructed using
the Mainz 24 [161], NME 20 [239] and χQCD 18A [240] values assuming zero correlations
between them. The results for the helicity and transversity moments are the FLAG averages
of the Mainz 24 [161] and NME 20 [239] values again assuming zero correlations. The values
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of δ(amin) for the Mainz 24 [161] for the three moments are 1.5, 0.2, 0.1 and those for the
NME 20 are 0.5, 1.0 and 0.2. The χQCD 18A work does not provide enough information to
determine δ(amin). The FLAG averages are

Nf = 2 + 1 : ⟨x⟩u−d = 0.153(13) Refs. [161, 239, 240], (464)

Nf = 2 + 1 : ⟨x⟩∆u−∆d = 0.200(13) Refs. [161, 239], (465)

Nf = 2 + 1 : ⟨x⟩δu−δd = 0.206(17) Refs. [161, 239]. (466)
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