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3 General definition of the low-energy limit of the Standard
Model

Authors: A. Portelli, A. Ramos, N. Tantalo

This section discusses the matching of quantum chromodynamics (QCD) and quantum elec-
trodynamics (QED) to nature in order to obtain predictions for low-energy Standard Model
observables. In particular, we discuss the prescription dependence, i.e., the dependence on
which observables are matched, arising when one neglects electromagnetic interactions, an
approximation made in numerous lattice and phenomenological calculations. These ambi-
guities need to be controlled when combining high-precision observables—typically with less
than 1% of relative uncertainty—in that approximation. In order to facilitate that, we pro-
pose here a fixed prescription for the separation of QCD and QED contributions to any given
hadronic observable. While this prescription is, in principle, arbitrary, one has to take care
not to introduce artificially large QED contributions and to stay close to prescriptions used
commonly in phenomenology. This prescription was discussed and agreed upon during an
open workshop that took place at the Higgs Centre for Theoretical Physics, Edinburgh, in
May 2023, and therefore is referred to as the “Edinburgh Consensus.”1

We note that since this consensus emerged only recently, the majority of results in this
review are averaged neglecting potential discrepancies arising from the ambiguities. This is,
on the one hand, an adequate procedure in the case of quantities with uncertainties larger
than the size of expected QED corrections. On the other hand, it can be difficult to correct
these ambiguities to a common prescription since it requires the knowledge of derivatives of
observables in quark masses and couplings, rarely communicated in papers. We emphasize
the present consensus in the hope that it will be widely adopted in upcoming high-precision
Standard Model predictions, allowing future editions of this review to avoid uncertainties
resulting from these ambiguities.

3.1 First-order isospin-breaking expansion

According to our present knowledge, hadronic physics is well described by the low-energy limit
of the Standard Model, which is understood as energies well below the electroweak symmetry-
breaking scale SESB ≈ 100 GeV. In that limit, the Standard Model is an SU(3)×U(1) gauge
theory defined by the QCD+QED Lagrangian, whose free parameters are the e-, µ-, and
τ -lepton masses, the u-, d-, s-, c-, and b-quark masses, and the strong and electromagnetic
coupling constants, respectively, gs and e. In that context, isospin symmetry is defined by
assuming that the up and down quarks are identical particles apart from their flavour. This
symmetry is only approximate and it is broken by two effects: the small but different masses
of the two quarks, and their different electric charges. The total effect is expected to be small,
typically a O(1%) perturbation of a hadronic energy or amplitude. Therefore, we consider
only first-order perturbations in isospin-breaking effects, and we expect this approximation
to be accurate at the level of O(10−4) relative precision.

The asymptotic states of QCD are hadrons not quarks, and hadron properties are the only
unambiguous observables experimentally available. Similarly, the strong coupling constant
is not directly accessible and can be substituted through dimensional transmutation by a

1https://indico.ph.ed.ac.uk/event/257/
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dimensionful hadronic energy scale. Moreover, the running of the electromagnetic coupling
constant is a higher-order correction beyond the order considered here. It can be fixed to its
Thomson-limit value. Finally, nature can be reproduced (up to weak and gravitational effects)
by fixing the bare parameters of the QCD+QED Lagrangian to reproduce the following inputs:

1. the Thomson-limit constant αϕ = e2

4π = 7.2973525693(11)× 10−3 [1],

2. the experimentally observed lepton masses mϕ
ℓ ,

3. a choice of Nf known independent hadronic quantities Mϕ, setting the quark masses,

4. a single known dimensionful hadronic quantity Sϕ, setting the QCD scale.

The vectors mℓ and M have three and Nf components, respectively, where Nf is the num-
ber of quark flavours in the calculation. In the present context, “known” is understood as
experimentally known for measurable quantities, or theoretically predicted for more abstract
quantitities, which are not accessible experimentally, but are renormalized and gauge invari-
ant and can be predicted by lattice gauge theory. If the dependency of a given observable
X(α,mℓ,M,S) on the above variables is known, then its physical value is predicted by

Xϕ = (Sϕ)[X]X̃(αϕ,mϕ
ℓ /S

ϕ,Mϕ/Sϕ) ≡ X(αϕ,mϕ
ℓ ,M

ϕ,Sϕ) , (22)

where X̃ is the dimensionless function describing X in units of the scale S, and [X] is the
energy dimension of X. Here M and S are assumed, without loss of generality, to have
an energy dimension of 1. Due to the renormalizability of QCD+QED, this prediction is
unambiguous, i.e., changing the variables Mϕ and Sϕ to other inputs with known physical
values will lead to the same prediction for renormalized observables.2

In many instances, the precision required on hadronic observables is not as small as one
percent, and isospin-breaking effects are potentially negligible. In those cases, it is generally
considerably simpler to neglect the QED contributions, both for lattice and phenomenologi-
cal calculations. Moreover, even for observables requiring isospin-breaking corrections to be
computed, it can be phenomenologically relevant to separate an isospin-symmetric value and
isospin-breaking corrections (e.g., specific parts of the HVP contribution to the muon g − 2,
decay constants in weak decays). However, since experimental measurements always contain
isospin-breaking corrections, there are no experimental result available to define the list of
inputs above for α = 0, or in the isospin-symmetric limit. Still, one would like to define an
expansion of the form

Xϕ = X̄ +Xγ +XSU(2) , (23)

where X̄ is the isospin-symmetric value of X, and Xγ and XSU(2) are the first-order elec-
tromagnetic and strong isospin-breaking corrections, respectively. Only the sum of these
three terms is unambiguous.3 Defining a value for individual terms is prescription-dependent,
and requires additional, in principle arbitrary, inputs. This issue has been discussed in re-
views [2, 3], and both the phenomenology [4–6] and lattice [7–20] literature. If quantities
defined at α = 0 are involved in the investigation of anomalies related to new physics searches,
the associated prescriptions must be matched across predictions. In the next section, we pro-
pose a prescription agreed upon at the dedicated May 2023 workshop in Edinburgh.

2Here “renormalizability” for QED is understood as perturbative renormalizability, which is sufficient in
this context.

3Here “unambiguous” is used in a loose sense. Ambiguities of the order O(1/mZ) and O(1/mNf+1), as well
as higher-order isospin-breaking corrections, remain and are considered to be irrelevant.
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QCD isoQCD QCD isoQCD
Mπ+ 135.0 MeV 135.0 MeV Mπ+/fπ+ 1.034 1.034
MK+ 491.6 MeV 494.6 MeV MK+/fπ+ 3.767 3.790
MK0 497.6 MeV 494.6 MeV MK0/fπ+ 3.813 3.790
MD+

s
1967 MeV 1967 MeV MD+

s
/fπ+ 15.07 15.07

MB0
s

5367 MeV 5367 MeV MB0
s
/fπ+ 41.13 41.13

fπ+ 130.5 MeV 130.5 MeV

Table 5: Edinburgh Consensus for the definition of pure QCD and isospin-symmetric QCD.
The rightmost table is redundant and provided for convenience.

3.2 Edinburgh Consensus

The decomposition Eq. (23) can be unambiguously defined given two extra sets of inputs
(m̂ℓ, M̂ , Ŝ) and (m̄ℓ, M̄ , S̄) specifying pure QCD and isospin-symmetric QCD, respectively
(denoted QCD and isoQCD). It is understood that in QCD isospin symmetry can still be
broken by the up-down quark-mass difference. The QCD and isoQCD values of an observable
X can then be defined by

X̂ = X(0, m̂ℓ, M̂ , Ŝ) and X̄ = X(0, m̄ℓ, M̄ , S̄) , (24)

respectively. The variables M̄ , S̄ must have one dimension of linear dependency to reflect
the exact isospin symmetry of this theory. This means that there are only Nf independent
numbers. Finally, the corrections in Eq. (23) are then defined by

Xγ = Xϕ − X̂ and XSU(2) = X̂ − X̄ . (25)

One should notice that these definitions already constitute in themselves a prescription, as
QED has an isospin-symmetric component which is here assumed to be excluded from the
component X̄.

The proposed prescription defines lepton masses to always be equal to their experimental
values (for which negligible experimental uncertainties are discarded), i.e., m̂ℓ = m̄ℓ = mϕ

ℓ ,
and is based on the mass variables M = (Mπ+ ,MK+ ,MK0 ,MD+

s
,MB0

s
) and the scale-setting

quantity fπ+ , with the values given in Tab. 5.4 We will now comment on the definition and
applications of that prescription.

3.3 Comparison to other schemes

The hadronic quantities that define the proposed prescription, as well as their input values,
have been chosen to balance between two main constraints, on the one hand numerical and
on the other hand theoretical. Since any uncertainties on the theoretical inputs have to
be propagated to the predictions, the numerical constraint requires choosing the matching
observables among those that can be computed on the lattice with the highest accuracy. The
theoretical constraint requires choosing a definition of QCD that leads to isospin-breaking
corrections which are as close as possible to what has commonly been done in the past, in
particular, in phenomenological calculations.

4For calculations with no active c and/or b quarks, the M
D+

s
and/or MB0

s
components should be ignored.
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On the numerical side, all the chosen hadronic inputs can be extracted from the leading
exponential behaviour at large Euclidean times of two-point mesonic lattice correlators with
high numerical precision. This constraint is the main reason behind the choice of fπ+ as
the scale-setting observable. From the theoretical and phenomenological perspectives, this
can be seen as an uncomfortable choice. Indeed, the physical quantity that is measured in
experiments is the leptonic decay rate of the charged pion. In the full theory (QCD+QED)
soft photons as well as nonfactorisable virtual QED corrections have to be taken into account
in the theoretical calculation in order to use the experimental values as an input, and previous
knowledge of the CKM matrix element Vud is required. From this perspective, for example,
the choice of the Ω−-baryon mass used by several lattice collaborations might be more natural.
However, the majority of lattice calculations are still performed in the α = 0 limit, which
makes fπ+ a more accessible choice than a baryonic quantity in most cases. It is crucial to
note that our prescription defines QCD and isoQCD in the space of possible α = 0 theories,
but the choice of coordinates to define these points is arbitrary and can be changed using
standard change-of-variable algebra, while keeping the prescription fixed. In particular, the
scale setting variable can be changed, as we discuss now.

The prescription above can be implemented by using other inputs. This is possible because
QCD is renormalizable. Indeed, one can start by defining QCD using our prescription to
compute X̂ and M̂Ω, following the notation of the previous section, namely

X̂ = X(0, m̂ℓ, M̂ , f̂π+) and M̂Ω = MΩ(0, m̂ℓ, M̂ , f̂π+) , (26)

where M̂ and f̂π+ are given by the “QCD” column in Tab. 5. Once this calculation has been
done, the value of M̂Ω that has been obtained (assuming for the moment that the errors are
negligible) can be substituted to f̂π+ to redefine our prescription independently from the pion
decay constant. In practice, though, it will not be possible to neglect the errors on M̂Ω. This
means that the equivalence between the two sets of coordinates, explicitly

X̂ = X(0, m̂ℓ, M̂ , f̂π+) = X(0, m̂ℓ, M̂ , M̂Ω) , (27)

can be established within the errors on M̂Ω that will have to be propagated on any prediction.
In this respect, the choice of defining QCD by prescribing with no errors the values appearing
in Tab. 5 puts the choice of f̂π+ on a slightly different footing than M̂Ω. The accuracy of this
matching will directly depend on the accuracy of the dimensionless ratio M̂Ω/f̂π+ . The whole
discussion above can be reiterated identically for isoQCD, replacing hatted quantities (X̂,
. . . ) with barred ones (X̄, . . . ). It is important to note that fπ+ is used only to define QCD
and plays no role in defining the full QCD+QED theory. In particular, through a change of
scale variable, like that discussed above, one does not need to know the QED correction to
the π+ leptonic decay rate to use our prescription, and one does not lose the ability to predict
this rate for high-precision determinations of the |Vud| CKM matrix element.

Theoretical constraints are the main reason behind the particular choice of values pre-
scribed in Tab. 5. Most isospin-breaking separation schemes used in the literature aim at
keeping constant the value of a definition of the renormalized quark masses when sending α
to zero between the physical QCD+QED theory and QCD. Such a class of constraints was im-
plemented in various ways, for example by the RM123/RM123S collaboration by computing
directly quark masses in the MS scheme at 2 GeV [8, 15, 21, 22]. Another example comes from
the BMW collaboration, which used in several calculations [7, 12, 16, 20] a scheme defined by
keeping fixed the squared masses of q̄q-connected mesons when changing α. Although these
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schemes share similar aims, they are not equivalent and differ by the choice of renormaliza-
tion scale and scheme, as well as the contribution from higher-order chiral corrections when
using squared meson masses. However, at the level of precision of current lattice calculations,
no significant discrepancies were observed between both approaches [15, 19, 20, 23], and the
numerical values of the pion and kaon masses in Tab. 5 are compatible with these determi-
nations within the current level of precision. We also note that the mass values prescribed
here are compatible with those produced from phenomenological inputs in the first edition of
FLAG [24], which predates the lattice references quoted above.

We end this chapter with a comment on Gasser-Rusetsky-Scimemi (GRS) type schemes [5].
These authors emphasized the importance of keeping track of the scheme dependence of the
splitting in Eq. (23). They furthermore proposed to keep renormalized quark masses and the
strong coupling at a particular matching scale µ1 (and a chosen renormalization scheme) fixed
as one turns off the electromagnetic coupling. In contrast to the perturbative models studied
by GRS, such a scheme is hard to implement in QCD. Even on the lattice, uncertainties are
introduced which are larger than the isospin-breaking corrections (see the sections on quark
masses and αs). The RM123S scheme [21] mentioned above is an electro-quenched GRS
type scheme.5 Since there are no electromagnetic contributions to αs in the electro-quenched
approximation, the generic difficulties of a GRS type scheme are circumvented.
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