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11 Scale setting
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Matching QCD to nature requires fixing the quark masses and matching an overall scale
to experiment. That overall energy scale S may be taken, for example, as the nucleon mass.
This process is referred to as scale setting.

11.1 Impact

The scale setting procedure, described in some detail below, is a rather technical step necessary
to obtain predictions from QCD. What may easily be overlooked is that the exact predictions
obtained from the theory, including many in this review, may depend rather sensitively on
the scale.

As long as the theory is incomplete, e.g., because we have predictions from Nf = 2 + 1
QCD, results will depend on which physics scale is used. Whenever a theory scale (see
Sec. 11.4) is used, it matters which value one imposes. Thus, to know whether computations
of a particular quantity agree or not, one should check which (value for a) scale was used.

The sensitivity of predictions to the scale vary with the observable. For example, the Λ
parameter of the theory has a linear dependence,

δΛ

Λ
≈ δS

S
, (467)

because Λ has mass dimension one and other hidden dependencies on the scale are (usually)
suppressed. Let us preview the results. The present precision on the most popular theory
scale, w0 in Eq. (503) is about 0.4% and for

√
t0 it is 0.6%. On the Λ parameter it is about

3%. Thus, we would think that the scale uncertainty is irrelevant. However, in Sec. 11.7 we
will discuss that differences between Nf = 2 + 1 and 2+1+1 numbers for

√
t0 are at around

2%, which does matter.
Also, light-quark masses have an approximatively linear dependence on the scale (roughly

speaking one determines, e.g., mud = 1
S × [M2

π ]exp × [mud S
M2

π
]lat) and scale uncertainties may

play an important rôle in the discussion of agreement vs. disagreement of computations within
their error budget.

The list of quantities where scale setting is very important may be continued; we just want
to mention an observable very much discussed at present, the hadronic vacuum-polarisation
contribution to the anomalous magnetic moment of the muon [1]. It is easily seen that the
dependence on the scale is about quadratic in that case [2],

δaHVP
µ

aHVP
µ

≈ 2
δS
S
. (468)

This fact means that scale setting has to be precise at the few per-mille precision for the aHVP
µ

lattice determination to be relevant in the comparison with experiment.

11.2 Scale setting as part of hadronic renormalization schemes

We consider QCD with Nf quarks and without a θ-parameter. This theory is completely
defined by its coupling constant as well as Nf quark masses. After these parameters are
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specified all other properties of the theory are predictions. Coupling and quark masses depend
on a renormalization scale µ as well as on a renormalization scheme. The most popular scheme
in the framework of perturbative computations is the MS scheme, but one may also define
nonperturbative renormalization schemes, see Secs. 4 and 9.

In principle, a lattice computation may, therefore, use these Nf + 1 parameters as input
together with the renormalization scale µ to fix the bare quark masses and coupling of the dis-
cretized Lagrangian, perform continuum and infinite-volume limit and obtain desired results,
e.g., for decay rates.1 However, there are various reasons why this strategy is inefficient. The
most relevant one is that unless one uses lattice gauge theory to compute them, coupling and
quark masses cannot be obtained from experiments without invoking perturbation theory and
thus necessarily truncation errors. Moreover, these parameters are naturally short-distance
quantities, since this is where perturbation theory applies. Lattice QCD on the other hand
is most effective at long distances, where the lattice spacing plays a minor role. Therefore, it
is more natural to proceed differently.

Namely, we may fix Nf + 1 nonperturbative, long-distance observables to have the values
found in nature. An obvious choice are Nf + 1 hadron masses that are stable in the absence
of weak interactions. This hadronic renormalization scheme is defined by

Mi(g0, {am0,j})
M1(g0, {am0,j})

=
M exp

i

M exp
1

, i = 2 . . . Nf + 1 , j = 1 . . . Nf . (469)

Here, Mi are the chosen hadron masses, g0 is the bare coupling, and am0,j are the bare
quark masses in lattice units. The ratio Mi/M1 is, precisely speaking, defined through the
hadron masses in lattice units, but in infinite volume. In QCD (without QED), all particles
are massive. Therefore, the infinite volume limit of the properties of stable particles is ap-
proached with exponentially small corrections, which are assumed to be estimated reliably.
The power-like finite-volume corrections in QCD+QED are discussed in Sec. 11.2.2. For fixed
g0, Eq. (469) needs to be solved for the bare quark masses,

am0,j = µj(g0) . (470)

The functions µj define a line in the bare parameter space, called the line of constant physics.
Its dependence on the set of masses {Mi} is suppressed. The continuum limit is obtained
as g0 → 0 with the lattice spacing shrinking roughly as aM1 ∼ e−1/(2b0g20). More precisely,
consider observables O with mass dimension dO. One defines their dimensionless ratio

Ô(aM1) =
O
MdO

1

∣∣∣∣∣
am0,j=µj(g0)

, (471)

and obtains the continuum prediction as

Ocont = (M exp
1 )

dO lim
aM1→0

Ô(aM1) (472)

which explains why the determination and use of aM1 is referred to as scale setting.
Equation (470) has to be obtained from numerical results. Therefore, it is easiest and

most transparent if the i-th mass ratio depends predominantly on the i-th quark mass. Re-
maining for a while in the isospin-symmetric theory with m0,1 = m0,2 (we enumerate the

1At first sight this seems like too many inputs, but note that it is the scale µ, at which α(µ) has a particular
value, which is the input. The coupling α by itself can have any (small) value as it runs.
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quark masses in the order up, down, strange, charm, bottom and ignore the top quark),
we have natural candidates for the numerators as the pseudoscalar masses in the associated
flavour sectors, i.e., π, K, D, B. The desired strong dependence on light- (strange-)quark
masses of π- (K-)meson masses derives from their pseudo-Goldstone nature of the approxi-
mate SU(3)L×SU(3)R symmetry of the massless QCD Lagrangian, which predicts that M2

π

is roughly proportional to the light-quark mass and M2
K to the sum of light- and strange-

quark masses. For D and B mesons approximate heavy-quark symmetry predicts MD and
MB to be proportional to charm- and bottom-quark masses. Also other heavy-light bound
states have this property. There is another important feature, which singles out pseudoscalar
masses. Because they are the lightest particles with the given flavour quantum numbers, their
correlation functions have the least signal/noise problem in the Monte Carlo evaluation of the
path integral [3, 4].

Still restricting ourselves to isospin-symmetric QCD (isoQCD, see Sec. 3), we thus take it
for granted that the choice Mi, i ≥ 2 is easy, and we do not need to discuss it in detail: the
pseudoscalar meson masses are very good choices, and some variations for heavy quarks may
provide further improvements.

The choice of M1 is more difficult. From the point of view of physics, a natural choice is
the nucleon mass, M1 =Mnucl. Unfortunately it has a rather bad signal/noise problem when
quark masses are close to their physical values. The ratio of signal to noise of the correlation
function at time x0 from N measurements behaves as [3]

Rnucl
S/N

x0 large∼
√
N exp(−(Mnucl −

3

2
Mπ)x0) ≈

√
N exp(−x0/0.27 fm) , (473)

where the numerical value of 0.27 fm uses the experimental masses. The behaviour in practice,
but at still favourably large quark masses, is illustrated in Fig. 50. Because this property leads
to large statistical errors and it is further difficult to control excited-state contaminations when
statistical errors are large, it is useful to search for alternative physics scales. The community
has gone this way, and we discuss some of them below. For illustration, here we just give
one example: the decay constants of leptonic π or K decays have mass dimension one and
can directly replace M1 above. Figure 50 demonstrates their long and precise plateaux as a
function of the Euclidean time. Advantages and disadvantages of this choice and others are
discussed more systematically in Sec. 11.3.

11.2.1 Theory scales

Since the signal/noise problem of physics scales is rather severe, they were already replaced
by theory scales in the very first days of lattice QCD. These scales cannot be determined from
experiment alone. Rather, their values have to be computed by lattice QCD using a physics
scale as input.

Creutz already used the string tension in his seminal paper on SU(2) Yang Mills theory
[10], because it is far easier to determine than glueball masses. A further step was made by
the potential scale r0, defined in terms of the static force F (r) as [11]

r20F (r0) = 1.65 . (474)

Even though r0 can vaguely be related to the phenomenology of charmonium and bottomo-
nium states, its precise definition is in terms of F (r) which can be obtained accurately from
Monte Carlo lattice computations with (improvable) control over the uncertainties, but not
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Figure 50: Effective masses forMproton [5], MΩ [6], V (≈ r0), V (≈ r1) [7] and fπ [8] on Nf = 2
CLS ensemble N6 with a = 0.045 fm,Mπ = 340 MeV on a 483 × 96 lattice [8]. All effective
“masses” have been scaled such that the errors in the graph reflect directly the errors of the
determined scales. They are shifted vertically by arbitrary amounts. Figure from Ref. [9].
Note that this example is at still favourably large quark masses. The situation for Mproton

becomes worse closer to the physical point, but may be changed by algorithmic improvements.

from experiment. In that sense, it is a prototype of a theory scale.

Useful properties of a good theory scale are high statistical precision, easy to control sys-
tematics, e.g., weak volume dependence, quark-mass dependence only due to the fermion
determinant, and low numerical cost for its evaluation. These properties are realized to vary-
ing degrees by the different theory scales covered in this section and, in this respect, they
are much preferred compared to physics scales. Consequently, the physics scale M1 has often
been replaced by a theory scale as, e.g., S = r−1

0 in the form

Ocont =
(
Sphys

)dO
lim
aS→0

ÔS(aS) with ÔS(aS) =
[
S−dO O

]
am0,j=µj(g0)

, (475)

and
Sphys = (M exp

1 ) lim
aM1→0

ŜM1(aM1) . (476)

In this section, we review the determination of numerical results for the values of various
theory scales in physical units, Eq. (476). The main difficulty is that a physics scale M1 has
to be determined first in order to connect to nature and, in particular, that the continuum
limit of the theory scale in units of the physics scale has to be taken.

11.2.2 Isospin breaking

For simplicity and because it is a very good approximation, we have assumed above that
all other interactions except for QCD can be ignored when hadron masses and many other
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properties of hadrons are considered. This is a natural point of view because QCD is a
renormalizable field theory and thus provides unique results.

However, we must be aware that while it is true that the predictions (e.g., for hadron
masses Mi, i > Nf + 1) are unique once Eq. (469) is specified, they will change when we
change the inputs M exp

i . These ambiguities are due to the neglected electroweak and gravita-
tional interactions, namely because QCD is only an approximate—even if precise—theory of
hadrons. At the sub-percent level, QED effects and isospin violations due to mu ̸= md must
be included. At that level one has a very precise description of nature, where weak decays or
weak effects, in general, can be included perturbatively and systematically in an effective-field-
theory description through the weak-effective-interaction Hamiltonian, while gravity may be
ignored.

Scale setting is then part of the renormalization of QCD+QED, and in principle it is
quite analogous to the previous discussion. Triviality of QED does not play a rôle at small
enough α: we may think of replacing the continuum limit a → 0 by a limit a → aw with
aw nonzero but very far below all physical QCD+QED scales treated. The definition and
implementation of a hadronic renormalization scheme of QCD+QED defined on the lattice is
discussed in Sec. 3. The electric charge appears as a new parameter and is conveniently fixed
in the Thomson limit. Care needs to be taken in the separate definition of QED effects and
strong isospin-breaking effects due to the up/down quark-mass difference. Here, we repeat
Eq. (23),

Xϕ = X̄ +Xγ +XSU(2) , (477)

and again emphasize that the split of physical observables Xϕ into their isoQCD part, X̄, the
QED contributions, Xγ , and the strong IB effects, XSU(2), is scheme dependent. In order to
hopefully avoid confusion and to make it possible to average results also when they have a
precision where the small IB-breaking effects matter, a particular scheme has been defined in
Sec. 3. For quantities that enter in the averages, the schemes used in the computations are
listed in Tab. 76. In this way, we can, to some degree, judge whether differences of results
may also be due to the scheme used.

As a matter of fact, many existing lattice calculations have been performed in the isospin-
symmetric limit, but not all the results considered in this review correspond to the very same
definition of QCD. The different choices of experimental inputs are perfectly legitimate if
QED radiative corrections are neglected, but in principle, predictions of isoQCD do depend
on these choices, and it is not meaningful to average numbers obtained with different inputs.
However, at the present level of precision the sub-percent differences in the inputs are most
likely not relevant, and we will average and compare isoQCD results irrespective of these
differences. The issue will become important when results become significantly more precise.
Of course, the different inputs may not be ignored, when radiative corrections, Eq. (23), from
various collaborations are directly compared. In this case, we strongly suggest to compare
results for the unambiguous full theory observable or sticking to a standard.

11.3 Physical scales

The purpose of this short section is to summarize the most popular scales and give a short
discussion of their advantages and disadvantages. We restrict ourselves to those used in more
recent computations and, thus, the list is short.
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Collaboration Ref. Nf MK [MeV] scale scale [MeV]

ETM 21 [12] 2+1+1 494.2 fπ 130.4
CalLat 20A [13] 2+1+1 494.2 MΩ 1672.5
MILC 15 [14] 2+1+1 494.5 Fp4s(fπ) 153.90(9)(+21

−28)
HPQCD 13A [15] 2+1+1 494.6 fπ 130.4

Hudspith 24 [16] 2+1 494.2 MΩ 1672.5
RQCD 22 [17] 2+1 494.2 MΞ 1316.9
CLS 21 [18] 2+1 497.6 1

3
(fπ + 2fK) 148.3

CLS 16 [19] 2+1 494.2 1
3
(fπ + 2fK) 147.6

RBC/UKQCD 14B [20] 2+1 495.7 MΩ 1672.5

HotQCD 14 [21] 2+1 n/a # r1(fπ) 0.3106 fm
BMW 12A [22] 2+1 494.2 MΩ 1672.5

Edinburgh consensus 494.6 fπ 130.5

# The scheme uses Mηss̄ ≈ 695 MeV instead of fixing MK.

Table 76: isoQCD schemes used in different computations as well as the Edinburgh consensus
(see Sec. 3). We do not list the choice for Mπ. It is Mπ = 135.0 MeV throughout. As all
quantities refer to the light sector of QCD only, charm quarks only enter through sea-quark
effects. We therefore do not list which quantity is used to fix the charm-quark mass at the
present stage.

11.3.1 The mass of the Ω baryon

As already discussed, masses of hadrons that are stable in QCD+QED and have a small
width, in general, are very good candidates for physical scales since there are no QED in-
frared divergences to be discussed. Furthermore, remaining within this class, the radiative
corrections are expected to be small. Furthermore, the Ω baryon has a significantly better
noise/signal ratio than the nucleon (see Fig. 50). It also has little dependence on up- and
down-quark masses, since it is composed entirely of strange valence quarks.

Still, one has to be aware that the mass is not extracted from the plateau region but from
a modelling of the approach to a plateau in the form of fits [13, 20, 22–25]. In this sense, the
noise/signal ratio problem may persist. The use of various interpolating fields for the Ω helps
in constraining such analyses, but it would be desirable to have a theoretical understanding of
multi-hadron (or in QCD+QED multi-hadron + photon) contributions as for the nucleon [26]
discussed in Sec. 10. In the present review, we take the estimates of the collaborations at face
value and do not try to apply a rating or an estimate of systematic error due to excited-state
contributions.

11.3.2 Pion and kaon leptonic decay rates

These decay rates play a prominent rôle in scale setting, in (pure) QCD because excited-state
contaminations can simply be avoided by going to sufficiently large Euclidean time. As a
downside, QED radiative corrections need to be taken into account in the values assigned
to the associated decay constants. Therefore, we briefly summarize the knowledge of QED
radiative corrections and the definition of decay constants. More details are found in the
previous edition of this review.

The physical observable is the decay rate ΓQCD+QED[π− 7→ µν̄µ(γ), Eγ ] of a pion at rest.
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It depends on the maximum energy Eγ of photons emitted in the decay and registered in the
experimental measurement. These soft and hard photons can’t be avoided since the cross-
section vanishes as Eγ → 0 and, e.g., the fixed-order cross-section without final-state photons
is infrared divergent. However, apart from the dependence on Eγ , there are no ambiguities
in the definition of ΓQCD+QED.

In QCD, the leptonic decay rate is,

ΓQCD[π 7→ µν̄µ] =
G2

F

8π
|Vud|2M exp

π−

(
mexp

µ

)2 [
1− (mexp

µ )
2(

M exp
π−

)2
] (

fQCD
π

)2
, (478)

where one naturally introduces the decay constant,

fQCD
π =

⟨0| ūγ0γ5d |π⟩QCD

MQCD
π

. (479)

of the pion. Radiative corrections to fQCD
π are then defined by

δfQCD
π (Eγ) =

√
ΓQCD+QED[π− 7→ µν̄µ(γ), Eγ ]

ΓQCD[π 7→ µν̄µ]
− 1 , (480)

such that

ΓQCD+QED[π− 7→ µν̄µ(γ), Eγ ] = ΓQCD[π 7→ µν̄µ]
[
1 + δfQCD

π (Eγ)
]2
. (481)

Common practice is to set

Eγ = Emax
γ =

M exp
π−

2

[
1− (mexp

µ )
2(

M exp
π−

)2
]
, (482)

the maximum energy allowed for a single photon in the case of negligible O(α2
em) corrections.

As discussed in Sec. 3, δfQCD
π (Eγ) depends on the scheme used to define QCD. However,

the RM123 lattice determination in the electro-quenched approximation [27] found the scheme
dependence to be irrelevant at the level of their result, δf isoQCD

π (Emax
γ ) = 0.0076(9).2 Addi-

tionally this agrees well with the estimate, δf isoQCD
π (Emax

γ ) = 0.0088(11) from ChPT [28–30].
Taking Vud from the PDG [31] (beta decays) and the ChPT number for δfπ, one has

f isoQCD
π = 130.56(2)exp(13)QED(2)Vud

MeV .

With the Edinburgh consensus Sec. 3, the scale of isoQCD is defined by

f isoQCD
π ≡ 130.5MeV . (483)

At the present level of accuracy the difference between the determined value (with a scheme
uncertainty of around 1 permille) and the defining value (483) is irrelevant.

Some scale determinations use also the Kaon decay constant. There the understanding
of QED radiative corrections is not yet as good as for pion decays. The ChPT estimate is

2More precisely, both a hadronic scheme and a so-called GRS scheme were tested, where as a simplifi-
cation one may replace constant αs(µref) across theories by constant lattice spacing in the electro-quenched
approximation.
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δf isoQCD
K (Emax

γ ) = 0.0053(11) [28–30], while the electro-quenched lattice computation yielded

δf isoQCD
K (Emax

γ ) = 0.0012(5) [27]. As a slight update of the previous review, here we opt for
a more conservative number of

δf isoQCD
K (Emax

γ ) = 0.003(3) , (484)

encompassing both estimates. Together with Vus = 0.2232(6) from Sec. 5 (f+(0) for Nf =
2 + 1 + 1) and the PDG decay rate, we have

f isoQCD
K = 157.4(2)exp(4)QED(4)Vus MeV . (485)

Depending on the lattice formulation, there is also a nontrivial renormalization of the
axial current. Since it is easily determined from a chiral Ward identity, it does not play an
important rôle. When it is present, it is assumed to be accounted for in the statistical errors.

11.3.3 Other physics scales

Scales derived from bottomonium have been used in the past, in particular, the splitting
∆MΥ = MΥ(2s) −MΥ(1s). They have very little dependence on the light-quark masses, but
need an input for the b-quark mass. In all relevant cases, the b quark is treated by NRQCD.

11.4 Theory scales

In the following, we consider in more detail the two classes of theory scales that are most
commonly used in typical lattice computations. The first class consists of scales related to
the static quark-antiquark potential [11]. The second class is related to the action density
renormalized through the gradient flow [32].

11.4.1 Potential scales

In this approach, lattice scales are derived from the properties of the static quark-antiquark
potential. In particular, a scale can be defined by fixing the force F (r) between a static quark
and antiquark separated by the distance r in physical units [11]. Advantages of using the
potential include the ease and accuracy of its computation, and its mild dependence on the
valence-quark mass. In general, a potential scale rc can be fixed through the condition that
the static force takes a predescribed value, i.e.,

r2cF (rc) = Xc , (486)

where Xc is a suitably chosen number. Phenomenological and computational considerations
suggest that the optimal choice for Xc is in the region where the static force turns over from
Coulomb-like to linear behaviour and before string breaking occurs. In the original work [11],
it was suggested to use X0 = 1.65 leading to the condition

r20F (r0) = 1.65 . (487)

In Ref. [33], the value X1 = 1.0 was proposed yielding the scale r1.
The static force is the derivative of the static quark-antiquark potential V (r) which can

be determined through the calculation of Wilson loops. More specifically, the potential at
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distance r is extracted from the asymptotic time dependence of the r × t-sized Wilson loops
W (r, t),

V (r) = − lim
t→∞

d

dt
log⟨W (r, t)⟩ . (488)

The derivative of the potential needed for the force is then determined through the derivative
of a suitable local parameterization of the potential as a function of r, e.g.,

V (r) = C−
1

r
+ C0 + C+r , (489)

and estimating uncertainties due to the parameterization. In some calculations, the gauge
field is fixed to Coulomb or temporal gauge in order to ease the computation of the potential
at arbitrary distances.

In order to optimize the overlap of the Wilson loops with the ground state of the potential,
one can use different types and levels of spatial gauge-field smearing and extract the ground-
state energy from the corresponding correlation matrix by solving a generalized eigenvalue
problem [34–36]. Finally, one can also make use of the noise reduction proposed in Refs. [37,
38]. It includes a smearing of the temporal parallel transporter [39] in the lattice definition
of the discretized loops and thus yields a different discretization of the continuum force.

11.4.2 Gradient flow scales

The gradient flow Bµ(t, x) of gauge fields is defined in the continuum by the flow equation

Ḃµ = DνGνµ, Bµ|t=0 = Aµ , (490)

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ], Dµ = ∂µ + [Bµ, · ] , (491)

where Aµ is the fundamental gauge field, Gµν the field-strength tensor, and Dµ the covariant
derivative [32]. At finite lattice spacing, a possible form of Eqs. (490) and (491) is

a2
d

dt
Vt(x, µ) = −g20 · ∂x,µSG(Vt) · Vt(x, µ) , (492)

where Vt(x, µ) is the flow of the original gauge field U(x, µ) at flow time t, SG is an arbitrary
lattice discretization of the gauge action, and ∂x,µ denotes the su(3)-valued differential op-
erator with respect to Vt(x, µ). An important point to note is that the flow time t has the
dimension of a length squared, i.e., t ∼ a2, and hence provides a means for setting the scale.

One crucial property of the gradient flow is that any function of the gauge fields evaluated
at flow times t > 0 is renormalized [40] by just renormalizing the gauge coupling. Therefore,
one can define a scale by keeping a suitable gluonic observable defined at constant flow time t,
e.g., the action density E = −1

2 TrGµνGµν [32], fixed in physical units. This can, for example,
be achieved through the condition

t2c⟨E(tc, x)⟩ = c , E(t, x) = −1

2
TrGµν(t, x)Gµν(t, x) , (493)

where Gµν(t, x) is the field-strength tensor evaluated on the flowed gauge field Vt. Then, the
lattice scale a can be determined from the dimensionless flow time in lattice units, t̂c = a2tc.
The original proposal in [32] was to use c = 0.3 yielding the scale t0,

t20⟨E(t0)⟩ = 0.3 . (494)
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For convenience one sometimes also defines s0 =
√
t0.

An alternative scale w0 has been introduced in Ref. [22]. It is defined by fixing a suitable
derivative of the action density,

W (tc) = tc · ∂t
(
t2⟨E(t)⟩

)
t=tc

= c . (495)

Setting c = 0.3 yields the scale w0 through

W (w2
0) = 0.3 . (496)

In addition to the lattice scales from t0 and w0, one can also consider the scale from
the dimensionful combination t0/w0. This combination is observed to have a very weak
dependence on the quark mass [12, 41, 42].

A useful property of the gradient-flow scales is the fact that their quark-mass dependence
is known from χPT [43].

Since the action density at t ∼ t0 ∼ w2
0 usually suffers from large autocorrelation [41, 44],

the calculation of the statistical error needs special care.
Lattice artefacts in the gradient-flow scales originate from different sources [45], which are

systematically discussed by considering t as a coordinate in a fifth dimension. First, there is
the choice of the action SG for t > 0. Second, there is the discretization of E(t, x). Third,
due to the discretization of the four-dimensional quantum action, and fourth, contributions
of terms localized at the boundary t = 0+. The interplay between the different sources of
lattice artefacts turns out to be rather subtle [45].

Removing discretization errors due to the first two sources requires only classical (g0-
independent) improvement. Those due to the quantum action are common to all t = 0
observables, but the effects of the boundary terms are not easily removed in practice. At
tree level, the Zeuthen flow [45] removes these effects completely, but none of the computa-
tions reviewed here have used it. Discretization effects due to SG can be removed by using
an improved action such as the tree-level Symanzik-improved gauge action [22, 46]. More
phenomenological attempts of improving the gradient-flow scales consist of applying a t-shift
[47], or tree-level improvement [48].

11.4.3 Other theory scales

The MILC collaboration has been using another set of scales, the partially-quenched pseu-
doscalar decay constant fp4s with degenerate valence quarks with a mass mq = 0.4 ·mstrange,
and the corresponding partially quenched pseudoscalar massMp4s. So far it has been a quan-
tity only used by the MILC collaboration [49–51]. We do not perform an in-depth discussion
or an average but will list numbers in the results section.

Yet another scale that has been used is the leptonic decay constant of the ηs. This fictitious
particle is a pseudoscalar made of a valence quark-antiquark pair with different (fictitious)
flavours which are mass-degenerate with the strange quark [52–54].

11.5 List of computations and results

11.5.1 Gradient-flow scales

We now turn to a review of the calculations of the gradient-flow scales
√
t0 and w0. The

results are compiled in Tab. 77 and shown in Fig. 51. In the following, we briefly discuss the
calculations in the order that they appear in the table and figure.
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√
t0 [fm] w0 [fm]

ETM 21 [12] 2+1+1 A ⋆ ⋆ ⋆ fπ 0.14436(61) 0.17383(63)
CalLat 20A [13] 2+1+1 A ⋆ ⋆ ⋆ MΩ 0.1422(14) 0.1709(11)
BMW 20 [23] 1+1+1+1 A ⋆ ⋆ ⋆ MΩ 0.17236(29)(63)[70]
ETM 20 [1076] 2+1+1 C ⋆ ⋆ ⋆ fπ 0.1706(18)

MILC 15 [14] 2+1+1 A ⋆ ⋆ ⋆ Fp4s(fπ)
# 0.1416(+8/-5) 0.1714(+15/-12)

HPQCD 13A [15] 2+1+1 A ⋆ ◦ ⋆ fπ 0.1420(8) 0.1715(9)

Hudspith 24 [16] 2+1 P ⋆ ⋆ ⋆ & 0.14480(32)(6)
RQCD 22 [17] 2+1 A ⋆ ⋆ ⋆ MΞ 0.1449(+7/-9)
CLS 21 [18] 2+1 C ⋆ ⋆ ⋆ fπ, fK 0.1443(7)(13)
CLS 16 [19] 2+1 A ◦ ⋆ ⋆ fπ, fK 0.1467(14)(7)

QCDSF/UKQCD 15B [56] 2+1 P ◦ ◦ ◦ M
SU(3)
P 0.1511(22)(6)(5)(3) 0.1808(23)(5)(6)(4)

RBC/UKQCD 14B [20] 2+1 A ⋆ ⋆ ⋆ MΩ 0.14389(81) 0.17250(91)

HotQCD 14 [21] 2+1 A ⋆ ⋆ ⋆ r1(fπ)
# 0.1749(14)

BMW 12A [22] 2+1 A ⋆ ⋆ ⋆ MΩ 0.1465(21)(13) 0.1755(18)(4)

# These scales are not physical scales and have been determined from fπ.
& There is no physical scale as such. The input is the quark-mass dependence of MΩ.

Table 77: Results for gradient flow scales at the physical point, cf. Eq. (476). Note that BMW
20 [23] take IB and QED corrections into account. An additional result for the ratio of scales
is:
ETM 21 [12]: t0/w0 = 0.11969(62) fm.

ETM 21 [12] finalizes and supersedes ETM 20 discussed below. It determines the scales√
t0, w0, also t0/w0 = 0.11969(62) fm, and the ratio

√
t0/w0 = 0.82930(65), cf. also HPQCD

13A [15]. Since ETM 21 is now published, the values replace the ones of ETM 20 in the
previous FLAG average.

CalLat 20A [13] use Möbius Domain-Wall valence fermions on HISQ ensembles generated
by the MILC and CalLat collaborations. The gauge fields entering the Möbius Domain-Wall
operator are gradient-flow smeared with t = a2. They compute the Ω mass and the scales
w0, t0 and perform global fits to determine w0MΩ and

√
t0MΩ at the physical point. The

flow is discretized with the Symanzik tree-level improved action and the clover discretization
of E(t) is used. A global fit with Bayesian priors is performed including terms derived from
χPT for finite-volume and quark-mass dependencies, as well as a2 and a2αs(1.5/a) terms for
discretization errors. Also, a tree-level improved definition of the GF scales is used where the
leading-in-g2 cutoff effects are removed up to and including O(a8/t4).

BMW 20 [23] presents a result for w0 in the context of their staggered-fermion calculation
of the muon anomalous magnetic moment. It is the first computation that takes QED and
isospin-breaking corrections into account. The simulations are performed by using staggered
fermions with stout gauge-field smearing with six lattice spacings and several pion masses
around the physical point withMπ between 110 and 140 MeV. Volumes are around L = 6 fm.
At the largest lattice spacing, it is demonstrated how the effective masses of the Ω correlator
almost reach the plateau value extracted from a four-state fit (two states per parity). Within
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the range where the data are fit, the deviation of data points from the estimated plateau is
less than a percent. Isospin-breaking corrections are computed by Taylor expansion around
isoQCD with QED treated as QEDL [57]. Finite-volume effects in QED are taken from the
1/L, 1/L2 universal corrections and O(1/L3) effects are neglected. The results for MΩw0 are
extrapolated to the continuum by a fit with a2 and a4 terms.

ETM 20 [1076] presents in their proceedings contribution a preliminary analysis of their
Nf = 2 + 1 + 1 Wilson twisted-mass fermion simulations at maximal twist (i.e., automatic
O(a) improved), at three lattice spacings and pion masses at the physical point. Their
determination of w0 = 0.1706(18) fm from fπ using an analysis in terms of Mπ is the value
quoted above. They obtain the consistent value w0 = 0.1703(18) fm from an analysis in terms
of the renormalized light quark mass.

MILC 15 [14] sets the physical scale using the fictitious pseudoscalar decay constant
Fp4s = 153.90(9)(+21/− 28) MeV with degenerate valence quarks of mass mv = 0.4ms and
physical sea-quark masses [51]. (Fp4s has strong dependence on the valence-quark mass and
is determined from fπ.) They use a definition of the flow scales where the tree-level lattice
artefacts up to O(a4/t2) are divided out. Charm-quark mass mistunings are between 1% and

11%. They are taken into account at leading order in 1/mc through Λ
(3)
QCD applied directly

to Fp4s and 1/mc corrections are included as terms in the fits. They use elaborate variations
of fits in order to estimate extrapolation errors (both in GF scales and Fp4s). They include
errors from FV effects and experimental errors in fπ in Fp4s.

HPQCD 13A [15] uses eight MILC-HISQ ensembles with lattice spacings a = 0.088, 0.121,
0.151 fm. Values of L are between 2.5 fm and 5.8 fm with MπL = 3.3–4.6. Pion masses range
between 128 and 306 MeV. QCD is defined by using the inputs Mπ = 134.98(32) MeV,
MK = 494.6(3) MeV, fπ+ = 130.4(2) MeV derived by model subtractions of IB effects.
Additional scale ratios are given:

√
t0/w0 = 0.835(8), r1/w0 = 1.789(26).

Hudspith 24 [16] computes the mass of the Omega baryon on CLSNf = 2+1 configurations
along the trajectories with approximately constant trace of the bare quark-mass matrix. They
use 27 ensembles with six different values of the lattice spacing from a = 0.09 fm to a = 0.04
fm. They compute the (nonpositive) correlation function CΩ(x0) of a local field with a
gauge-fixed wall-source, which results in a very good statistical precision. It is analyzed
directly with a two-state fit describing the data over a large range. In addition they also
extract MΩ by constructing a 2x2 generalized Pencil-of-Functions matrix correlator from
CΩ(x0), CΩ(x0 + a), CΩ(x0 + 2a). Projecting with a GEVP eigenvector (from a fixed-time
GEVP) a correlation function with a long plateau of the effective mass is found. Precisions
for the Omega mass on various ensembles range from a few per mille to below a per mille.
These masses, together with the scale t0 are subsequently fit using a phenomenology- and
ChPT-motivated form where a few parameters are taken from previous ChPT fits [58] to
baryon masses computed on CLS ensembles by RQCD [17]. The dependence on t0 is in the
higher-order chiral-correction terms which include NNNLO. There is no term in the fit which
allows for discretization effects in the chiral corrections. Their absence is justified by the
results of previous fits in [58]. Given the unconventional analysis carried out in this work, the
WG hopes that additional technical information will be provided in the published version of
the paper (in particular concerning the direction in parameter space of the global fit of the Ω,
kaon and pion masses from which the continuum value of t0 is extracted) and may reconsider
the ⋆ assigned in this review, on the basis of the standard continuum-limit criterion, once
the paper is published and eligible to enter the average. Once the precision for the raw values
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of amΩ is independently confirmed, this paper [16], possibly with a new analysis, may lead
to very high-precision determinations of the theory scales.

RQCD 22 [17] is an independent analysis of CLS ensembles employing Nf = 2 + 1 non-
perturbatively improved Wilson fermions and the tree-level Symanzik improved gauge action.
It uses a multitude of quark-mass combinations at six different values of the lattice spacing,
ranging from a ≲ 0.098 fm down to a < 0.039 fm. Near-physical quark masses are realized at
a = 0.064 fm and a = 0.085 fm. The input quantities used to fix the physical point and to
set the scale are Mπ = 134.8(3) MeV, MK = 494.2(3) MeV, and mΞ = 1316.9(3) MeV (last
line of pg. 33 in [17]). As RQCD 22 has been published since the last update, the result for√
t0 is now included in the FLAG average.
CLS 21 [18] is a proceedings contribution describing a preliminary analysis following the

one in CLS 16 [19], cf. the description below. CLS 21 includes about twice the number of
ensembles as compared to CLS 16, in particular, ensembles at two more lattice spacings and
two ensembles at the physical point. As a consequence, this analysis is not considered a
straightforward update and hence does not supersede the result of CLS 16.

CLS 16 [19] uses CLS configurations of 2+1 nonperturbatively O(a)-improved Wilson
fermions. There are a few pion masses with the strange mass adjusted along a line of mu +
md+ms = const. Three different lattice spacings are used. They determine t0 at the physical
point defined by π and K masses and the linear combination fK + 1

2fπ. They use the Wilson
flow with the clover definition of E(t).

QCDSF 15B [56, 59] results, unpublished, are obtained by simulating Nf = 2 + 1 QCD
with the tree-level Symanzik-improved gauge action and clover Wilson fermions with single-
level stout smearing for the hopping terms together with unsmeared links for the clover term
(SLiNC action). Simulations are performed at four different lattice spacings, in the range
[0.06, 0.08] fm, with Mπ,min = 228 MeV and Mπ,minL = 4.1. The results for the gradient-flow
scales have been obtained by relying on the observation that flavour-symmetric quantities
get corrections of O((∆mq)

2) where ∆mq is the difference of the quark mass from the SU(3)-
symmetric value. The O(∆m2

q) terms are not detected in the data and subsequently neglected.
RBC/UKQCD 14B [20] presents results for

√
t0 and w0 obtained in QCD with 2 + 1

dynamical flavours. The simulations are performed by using domain-wall fermions on six
ensembles with lattice spacing a−1 = 1.38, 1.73, 1.78, 2.36, 2.38, and 3.15 GeV, pion masses
in the range Munitary

π ∈ [139, 360] MeV. The simulated volumes are such that MπL > 3.9.
The effective masses of the Ω correlator are extracted with two-state fits and it is shown, by
using two different nonlocal interpolating operators at the source, that the correlators almost
reach a pleateau. In the calculation of

√
t0 and w0, the clover definition of E(t) is used. The

values given are
√
t0 = 0.7292(41)GeV−1 and w0 = 0.8742(46)GeV−1 which we converted to

the values in Tab. 77.
HotQCD 14 [21] determines the equation of state with Nf = 2+1 flavours using highly im-

proved staggered quarks (HISQ/tree). As a byproduct, they update the results of HotQCD
11 [60] by adding simulations at four new values of β, for a total of 24 ensembles, with
lattice spacings in the range [0.04, 0.25] fm and volumes in the range [2.6, 6.1] fm with
Mπ = 160 MeV. They obtain values for the scale parameters r0 and w0, via the ratios
r0/r1, w0/r1 and using r1 = 0.3106(14)(8)(4) fm from MILC 10 [61]. They obtain for the
ratios (r0/r1)cont = 1.5092(39) and (w0/r1)cont = 0.5619(21) in the continuum. They cross-
check their determination of the scale r1 using the hadronic quantities fK , fη from HPQCD
09B [53] and the experimental value of Mφ, and find good agreement.

BMW 12A [22] is the work in which w0 was introduced. Simulations with 2HEX smeared
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Figure 51: Results for gradient flow scales.

Wilson fermions and two-level stout-smeared rooted staggered fermions are done. The Wilson
flow with clover E(t) is used, and a test of the Symanzik flow is carried out. They take the
results with Wilson fermions as their central value, because those “do not rely on the ‘rooting’
of the fermion determinant”. Staggered fermion results agree within uncertainties.

11.5.2 Potential scales

We now turn to a review of the calculations of the potential scales r0 and r1. The results are
compiled in Tab. 78 and shown in Fig. 52. With the exception of TUMQCD 22 [62], the most
recent calculations date back to 2014, and we discuss them in the order that they appear in
the table and the figure.

Asmussen 23 [64] perform a computation of the potential at five lattice spacings down to
a = 0.04 fm on CLS ensembles. The ground-state level is extracted from a GEVP, starting
from smeared Wilson loops with different levels of smearing. The results are thus far only
available as a conference proceedings. The final result for r0 originates from a global fit
incorporating the pion-mass dependence and the lattice-spacing dependence.

TUMQCD 22 [62] uses HISQ ensembles generated by MILC at six lattice spacings ranging
from a = 0.15 fm to a = 0.03 fm to compute the potential. Scale setting is performed through
fp4s [50]. In contrast to other determinations, the static potential is extracted using Coulomb-
gauge fixing on two time-slices and the Wilson lines connecting the two time-slices. Thus,
there is no variational method but fits are performed with up to three energy levels. Both
continuum extrapolations with a2 corrections and α2(1/a) a2 are performed, where there is
a preselection of the direction r⃗/r and direction-dependent discretization effects are assumed
to be sufficiently reduced by the use of the tree-level improved rI [11]. The final results come
from a Bayesian model average.

ETM 14 [63] uses Nf = 2 + 1 + 1 Wilson twisted-mass fermions at maximal twist (i.e.,
automatic O(a)-improved), three lattice spacings and pion masses reaching down toMπ = 211
MeV. They determine the scale r0 through fπ = fπ+ = 130.41 MeV. A crosscheck of the so-
obtained lattice spacings with the ones obtained via the fictitious pseudoscalar meson Ms′s′

made of two strange-like quarks gives consistent results. The crosscheck is done using the
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r0 [fm] r1 [fm]

TUMQCD 22 [62] 2+1+1 A ⋆ ⋆ ⋆ fp4s ([50]) $ 0.4547(64) 0.3037(25)
ETM 14 [63] 2+1+1 A ◦ ⋆ ⋆ fπ 0.474(14)
HPQCD 13A [15] 2+1+1 A ⋆ ◦ ⋆ fπ 0.3112(30)
HPQCD 11B [52] 2+1+1 A ◦ ◦ ◦ ∆MΥ, fηs 0.3209(26)

Asmussen 23 [64] 2+1 C ⋆ ⋆ ⋆ fπ, fK 0.4671(64)

HotQCD 14 [21] 2+1 A ⋆ ⋆ ⋆ r1([61])
# 0.4671(41)

χQCD 14 [65] 2+1 A ◦ ◦ ◦ three inputs3 0.465(4)(9)
HotQCD 11 [60] 2+1 A ⋆ ⋆ ⋆ fπ 0.468(4)
RBC/UKQCD 10A [24] 2+1 A ◦ ◦ ◦ MΩ 0.487(9) 0.333(9)
MILC 10 [61] 2+1 C ◦ ⋆ ⋆ fπ 0.3106(8)(14)(4)
MILC 09 [66] 2+1 A ◦ ⋆ ⋆ fπ 0.3108(15)(+26

−79)
MILC 09A [67] 2+1 C ◦ ⋆ ⋆ fπ 0.3117(6)(+12

−31)
HPQCD 09B [53] 2+1 A ◦ ⋆ ◦ three inputs 0.3133(23)(3)
PACS-CS 08 [25] 2+1 A ⋆ ■ ■ MΩ 0.4921(64)(+74

−2 )
HPQCD 05B [54] 2+1 A ◦ ◦ ◦ ∆MΥ 0.469(7) 0.321(5)
Aubin 04 [68] 2+1 A ◦ ◦ ◦ ∆MΥ 0.462(11)(4) 0.317(7)(3)

# This theory scale was determined in turn from r1 [61].
$ This theory scale was determined in turn from fπ.

Table 78: Results for potential scales at the physical point, cf. Eq. (476). ∆MΥ = MΥ(2s) −
MΥ(1s).

dimensionless combinations r0Ms′s′ (with r0 in the chiral limit) and fπ/Ms′s′ determined in
the continuum, and then using r0/a and the value of Ms′s′ obtained from the experimental
value of fπ. We also note that in Ref. [41] using the same ensembles the preliminary value
w0 = 0.1782 fm is determined, however, without error due to the missing or incomplete
investigation of the systematic effects.

HPQCD 13A [15] was already discussed above in connection with the gradient flow scales.
HPQCD 11B [52] uses five MILC-HISQ ensembles and determines r1 fromMΥ(2s)−MΥ(1s)

and the decay constant fηs (see HPQCD 09B). The valence b quark is treated by NRQCD,
while the light valence quarks have the HISQ discretization, identical to the sea quarks.

HotQCD 14 [21] was already discussed in connection with the gradient flow scales.
χQCD 14 [65] uses overlap fermions as valence quarks on Nf = 2+1 domain-wall fermion

gauge configurations generated by the RBC/UKQCD collaboration [24]. Using the physical
masses of Ds, D

∗
s and J/ψ as inputs, the strange- and charm-quark masses and the decay

contant fDs are determined as well as the scale r0.
HotQCD 11 [60] uses configurations with tree-level improved Symanzik gauge action and

HISQ staggered quarks in addition to previously generated ensembles with p4 and asqtad
staggered quarks. In this calculation, QCD is defined by generating lines of constant physics
with ml/ms = {0.2, 0.1, 0.05, 0.025} and setting the strange-quark mass by requiring that

the mass of a fictious ηss̄ meson is Mηss̄ =
√

2M2
K −M2

π . The physical point is taken to be
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at ml/ms = 0.037. The physical scale is set by using the value r1 = 0.3106(8)(18)(4) fm
obtained in Ref. [61] by using fπ as physical input. In the paper, this result is shown to be
consistent within the statistical and systematic errors with the choice of fK as physical input.
The result r0/r1 = 1.508(5) is obtained by averaging over 12 ensembles at ml/ms = 0.05 with
lattice spacings in the range [0.066, 0.14] fm. This result is then used to get r0 = 0.468(4) fm.
Finite-volume effects have been monitored with 20 ensembles in the range [3.2, 6.1]fm with
MπL > 2.6.

RBC/UKQCD 10A [24] uses Nf = 2 + 1 flavours of domain-wall quarks and the Iwasaki
gauge action at two values of the lattice spacing with unitary pion masses in the approximate
range [290, 420] MeV. They use the masses of π andK meson and of the Ω baryon to determine
the physical quark masses and the lattice spacings, and so obtain estimates of the scales r0, r1
and the ratio r1/r0 from a combined chiral and continuum extrapolation.

MILC 10 [61] presents a further update of r1 with asqtad-staggered-quark ensembles with
a ∈ {0.045, 0.06, 0.09} fm. It supersedes MILC 09 [66, 67, 69].

MILC 09 [66] presents anNf = 2+1 calculation of the potential scales on asqtad-staggered-
quark ensembles with a ∈ {0.045, 0.06, 0.09, 0.12, 0.15, 0.18} fm. The continuum extrapolation
is performed by using Goldstone-boson pions as light as Mπ = 224 MeV (RMS pion mass
of 258 MeV). The physical scale is set from fπ. The result for r1 obtained in the published
paper [66] is then updated and, therefore, superseded by the conference proceedings MILC
09A and 09B [67, 69].

HPQCD 09B [53] is an extension of HPQCD 05B [54] and uses HISQ valence quarks
instead of asqtad quarks. The scale r1 is obtained from three different inputs. First r1 =
0.309(4) fm from the splitting of 2S and 1S Υ states as in Ref. [54], second r1 = 0.316(5) fm
from MDs − Mηs/2 and third r1 = 0.315(3) fm from the decay constant of the ηs. The
ficitious ηs state is operationally defined by setting quark masses to the s-quark mass and
dropping disconnected diagrams. Its mass and decay constant are obtained from a partially-
quenched-chiral-perturbation-theory analysis using the pion and kaon states from experiment
together with various partially-quenched lattice data. The three results are combined to
r1 = 0.3133(23)(3) fm.

PACS-CS 08 [25] presents a calculation of r0 in Nf = 2 + 1 QCD by using NP O(a)-
improved clover Wilson quarks and Iwasaki gauge action. The calculation is done at fixed
lattice spacing a = 0.09 fm and is extrapolated to the physical point from (unitary) pion
masses in the range [156, 702] MeV. The Nf = 2+1 theory is defined by fixing Mπ, MK , and
MΩ to 135.0, 497.6, and 1672.25 MeV, respectively. The effective masses of smeared-local Ω
correlators averaged over the four spin polarizations show quite good plateaux.

RBC/Bielefeld 07 [70] performed calculations of the equation of state with two light-quark
flavours and a heavier strange quark using improved staggered fermions. Zero-temperature
calculations including the static-quark potential were used to set the temperature scale for
the thermodynamic observables. The lattice cut-off changes by a factor 6 from a ≃ 0.3 fm
down to a ≃ 0.05 fm while the pion mass is kept fixed at Mπ ≃ 220(4) MeV. Apart from
the dimensionless ratio r0/r1 = 1.4636(60) they also provide a result for the ratio r0

√
σ =

1.1034(40)
HPQCD 05B [54] performed the first bottomonium spectrum calculation in full QCD

with Nf = 2 + 1 on MILC asqtad configurations and the b quark treated by NRQCD. They
find agreement of the low lying Υ states with experiment and also compare to quenched and
Nf = 2 results. They determined r0 and r1 from the splitting of 2S and 1S states.

Aubin 04 [68] presents an Nf = 2 + 1 calculation of the potential scales by using asqtad
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staggered quark ensembles with a = 0.09 and 0.12} fm. The continuum extrapolation is
performed by using Goldstone-boson pions as light as Mπ = 250 MeV. The physical scale is
set from the Υ 2S-1S and 1P-1S splittings computed with NRQCD by HPQCD [71].
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Figure 52: Results for potential scales.

11.5.3 Ratios of scales

It is convenient in many cases to also have ratios of scales at hand. In addition to trans-
lating from one scale to another, the ratios provide important crosschecks between different
determinations. Results on ratios provided by the collaborations are compiled in Tab. 79 and
Fig. 53. The details of the computations were already discussed in the previous sections.
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√
t0/w0 r0/r1 r1/w0

TUMQCD 22 [62] 2+1+1 A ⋆ ⋆ ⋆ 1.4968(69)
ETM 21 [12] 2+1+1 A ⋆ ⋆ ⋆ 0.82930(65)
HPQCD 13A [15] 2+1+1 A ⋆ ◦ ⋆ 0.835(8) 1.789(26)

HotQCD 14 [21] 2+1 A ⋆ ⋆ ⋆ 1.7797(67)
HotQCD 11 [60] 2+1 A ⋆ ⋆ ⋆ 1.508(5)

RBC/UKQCD 10A [24] 2+1 A ◦ ◦ ◦ 1.462(32)#

RBC/Bielefeld 07 [70] 2+1 A ■ ⋆ ⋆ 1.4636(60)
Aubin 04 [68] 2+1 A ◦ ◦ ◦ 1.474(7)(18)

#This value is obtained from r1/r0 = 0.684(15)(0)(0).

Table 79: Results for dimensionless ratios of scales.
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Figure 53: Results for dimensionless ratios of scales.
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11.6 Averages

Data-driven continuum-limit criterion
As discussed in Sec. 2.1.2, we evaluate the inflation factor

s(a) = max[1, 1 + 2(δ(a)− 3)/3] , δ(a) =
|Q(a)−Q(0)|

σQ
, (497)

where Q is the quantity for which we perform an average, and σQ is the uncertainty estimated
by the collaboration for its continuum limit. If s(amin) exceeds one, i.e., if the continuum
limit is more than three σQ from the result at smallest lattice spacing, amin, the error of the
computation is inflated by s(amin) before taking the average. For our quantities s(amin) = 1
except for few cases. We therefore report explicitly values of s(amin) only where s(amin) > 1.

Gradient flow scale
√
t0

For Nf = 2+1+1, we have two recent calculations from ETM 21 [12] and CalLat 20A [13],
and two less recent ones from MILC 15 [14] and HPQCD 13A [15] fulfilling the FLAG criteria
to enter the average. The latter two and CalLat 20A are based on the same MILC-HISQ
gauge-field ensembles, hence we consider their statistical errors to be 100% correlated.

For Nf = 2+1, we have four calculations from RQCD 22 [17], CLS 16 [19], RBC/UKQCD
14B [20], and BMW 12A [22] which enter the FLAG average. RQCD 22 and CLS 16 are
based on the same gauge-field ensembles, hence we consider their statistical errors to be
100% correlated. The other two are independent computations, so there is no correlation to
be taken into account. QCDSF/UKQCD 15B [56] does not contribute to the average, because
it is not published. CLS 21 [18] is a proceedings contribution based on double the number of
ensembles. It is therefore not a straightforward update and does not supersede CLS 16 [19].
Performing the weighted and correlated average we obtain

Nf = 2 + 1 + 1 :
√
t0 = 0.14292(104) fm Refs. [12–15], (498)

Nf = 2 + 1 :
√
t0 = 0.14474(57) fm Refs. [17, 19, 20, 22]. (499)

We note that the Nf = 2+1+1 results of staggered fermions and the twisted-mass result are
not well compatible. The resulting stretching factor based on the χ2 value from the weighted
average for Nf = 2 + 1 + 1 is 1.81. It causes the error to be increased compared to FLAG
21. For the Nf = 2 + 1 average the stretching factor is 1.04. We hope that the differences
for Nf = 2+1+1 get resolved in the near future and the uncertainty of the average decreases.

Gradient flow scale w0

For Nf = 1 + 1 + 1 + 1, including QED, there is a single calculation, BMW 20 [23] with
the result

Nf = 1 + 1 + 1 + 1 + QED : w0 = 0.17236(70) fm Ref. [23]. (500)

For Nf = 2+1+1 we now have four calculations ETM 21 [12], CalLat 20A [13], MILC 15
[14], and HPQCD 13A [15] entering the FLAG average. The proceedings ETM 20 is super-
seded by ETM 21. As discussed above in connection with

√
t0, we assume 100% correlation

between the statistical errors of CalLat 20A, MILC 15, and HPQCD 13A.
For Nf = 2+1, we have three calculations RBC/UKQCD 14B [20], HotQCD 14 [21], and

BMW 12A [22] that enter the FLAG average. These calculations are independent, and no
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correlation is used. QCDSF/UKQCD 15B [56] does not contribute to the average, because it
is not published.

Performing the weighted and correlated average, we obtain

Nf = 2 + 1 + 1 : w0 = 0.17256(103) fm Refs. [12–15], (501)

Nf = 2 + 1 : w0 = 0.17355(92) fm Refs. [20–22]. (502)

As above, Nf = 2+1+1 results of staggered fermions and the twisted-mass result are not well
compatible. The resulting stretching factor based on the χ2 value from the weighted average
is 1.67. It causes the error to be slightly increased compared to FLAG 21. For the Nf = 2+1
average the stretching factor is 1.23. We hope that the differences for Nf = 2 + 1 + 1 get
resolved in the near future and the uncertainty of the average decreases.

Isospin-breaking and electromagnetic corrections are expected to be small at the level
of present uncertainties. This is also confirmed by the explicit computation by BMW 12A.
Therefore, we also perform an average over all Nf > 2 + 1 computations and obtain

Nf > 2 + 1 : w0 = 0.17250(70) fm Refs. [12–15, 23]. (503)

For the Nf > 2 + 1 average the rescaling factor is 1.45.

Gradient flow scale t0/w0

Currently, there is only one calculation of the scale t0/w0 available from ETM 21 [12]
which forms the FLAG average

Nf = 2 + 1 + 1 : t0/w0 = 0.11969(62) fm Ref. [12]. (504)

Potential scale r0
For Nf = 2+ 1+ 1, there are two determinations of r0 from ETM 14 [63] and TUMQCD

22 [62], which contribute to the FLAG average and these are uncorrelated.
For Nf = 2 + 1, all but one calculation fulfill all the criteria to enter the FLAG average.

HotQCD 14 [21] is essentially an update of HotQCD 11 [60] by enlarging the set of ensembles
used in the computation. Therefore, the result from HotQCD 14 supersedes the one from
HotQCD 11 and, hence, we only use the former in the average. The computation of χQCD
[65] is based on the configurations produced by RBC/UKQCD 10A [24], and we, therefore,
assume a 100% correlation between the statistical errors of the two calculations. HPQCD
05B [54] enhances the calculation of Aubin 04 [68] by adding ensembles at a coarser lattice
spacing and using the same discretization for the valence fermion. Therefore, we consider the
full errors (statistical and systematic) on the results from Aubin 04 and HPQCD 05B to be
100% correlated.

Performing the weighted (and correlated) average, we obtain

Nf = 2 + 1 + 1 : r0 = 0.4580(73) fm Refs. [62, 63], (505)

Nf = 2 + 1 : r0 = 0.4701(36) fm Refs. [21, 24, 54, 65, 68]. (506)

We note that for the Nf = 2+1+1 average, the stretching factor based on the χ2-value from
the weighted average is 1.25, while for the Nf = 2 + 1 average it is 1.14.

Potential scale r1

20

http://arxiv.org/abs/2411.04268


Y. Aoki et al. FLAG Review 2024 2411.04268

For Nf = 2+1+1, there are three works that fulfill the criteria to enter the FLAG average,
namely TUMQCD 22 [62], HPQCD 13A [15] and HPQCD 11B [52]. They are all based on a
varying number of MILC-HISQ ensembles and we therefore assume 100% correlation between
the statistical errors. The result from HPQCD 13A supersedes the result from HPQCD 11B
(in line with a corresponding statement in HPQCD 13A), hence TUMQCD 22 and HPQCD
13A form the FLAG average.

For Nf = 2 + 1, all the results quoted in Tab. 78 fulfill the FLAG criteria, but not all of
them enter the average. The published result from MILC 09 [66] is superseded by the result
in the proceedings MILC 10 [61], while MILC 09A [67] is a proceedings contribution and
does not enter the average. HPQCD 09B [53] uses HISQ valence quarks instead of asqtad
valence quarks as in HPQCD 05B [54]. Therefore, we have RBC/UKQCD 10A [24], MILC
10, HPQCD 09B, HPQCD 05B, and Aubin 04 entering the average. However, since the latter
four calculations are based on the aqtad MILC ensembles, we attribute 100% correlation
on the statistical error between them and 100% correlation on the systematic error between
HPQCD 05B and Aubin 04 as discussed above in connection with r0.

Performing the weighted and correlated average, we obtain

Nf = 2 + 1 + 1 : r1 = 0.3068(37) fm Refs. [15, 62], (507)

Nf = 2 + 1 : r1 = 0.3127(30) fm Refs. [24, 53, 54, 61, 68]. (508)

We note that for the Nf = 2+1+1 average the stretching factor based on the χ2-value from
the weighted average is 1.92, while for the Nf = 2+1 average it is 1.57. While it is not entirely
clear what the reasons are for the discrepancies encoded in these stretching factors, excited-
state contaminations are likely to play a role. Also for the potential, states with additional
pions will play an increasingly important role at small pion masses and are not easily captured.

The scales Mp4s and fp4s
As mentioned in Sec. 11.4.3, these scales have been used only by the MILC and FNAL/MILC

collaborations [49–51]. The latest numbers from Ref. [50] are f4ps = 153.98(11)(+2
−12)(12)[4]

MeV and Mp4s = 433.12(14)(+17
−6 )(4)[40] MeV and, hence, we have

Nf = 2 + 1 + 1 : f4ps = 153.98(20) MeV Ref. [50], (509)

Nf = 2 + 1 + 1 : M4ps = 433.12(30) MeV Ref. [50]. (510)

Dimensionless ratios of scales
We start with the ratio

√
t0/w0 for which two Nf = 2 + 1 + 1 calculations from ETM 21

[12] and HPQCD 13A [15] are available and form the FLAG average

Nf = 2 + 1 + 1 :
√
t0/w0 = 0.832(6) Refs. [12, 15]. (511)

Here we found a large stretching factor s(amin) = 12.3 for [12]. It was applied to the un-
certainty before performing the weighted average and has a large effect. In fact, in the
web-update after FLAG 21 the error was an order of magnitude smaller due to the very small
error of ETM 21. This is now compensated by the large stretching factor.

For the ratio r0/r1 there is only one Nf = 2+1+1 calculation available from TUMQCD 22
[62], which fulfills the FLAG criteria and therefore forms the FLAG average. For Nf = 2+ 1
there are three calculations from HotQCD 11 [60], RBC/UKQCD 10A [24], and Aubin 04
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[68] available. They all fulfill the FLAG criteria and enter the FLAG average of this ratio,

Nf = 2 + 1 + 1 : r0/r1 = 1.4968(69) Ref. [62], (512)

Nf = 2 + 1 : r0/r1 = 1.5049(74) Refs. [24, 60, 68]. (513)

We note that for Nf = 2 + 1, the stretching factor based on the χ2-value from the weighted
average is 1.54.

Finally, for the ratio r1/w0 there is one computation from HotQCD 14 [21] for Nf =
2 + 1 + 1, and one from HPQCD 13A [15] for Nf = 2 + 1 fulfilling the FLAG criteria, and,
hence, forming the FLAG values

Nf = 2 + 1 + 1 : r1/w0 = 1.789(26) Ref. [15], (514)

Nf = 2 + 1 : r1/w0 = 1.7797(67) Ref. [21]. (515)

11.7 Observations and conclusions

Unfortunately the different computations for theory scales reported here are generally not in
good agreement within each set of Nf = 2+1+1 and 2+1 flavour content. As a measure we
list here the stretching factors above one. We remind the reader that their squares are equal to
the χ2/dof of the weighted averages. Quantitatively, the stretching factors are for Nf = 2+1:
1.2 (w0), 1.1 (r0), 1.6 (r1), 1.5 (r0/r1). For Nf = 2+1+ 1 the numbers are larger: 1.8 (

√
t0),

1.7 (w0) 1.3 (r0) 1.9 (r1), and due to differences which exist between present-days twisted-
mass QCD results and staggered results. Of course, the limited number of large-scale QCD
simulations that are available means that there are only a small number of truly independent
determinations of the scales. For example, three out of the five computations entering our
average for w0 are based on the same HISQ rooted staggered fermion configurations and thus
their differences are only due to the choice of the physical scale (MΩ vs. fπ), the valence quark
action (Möbius domain-wall valence fermions vs. staggered fermions) employed to compute it
and different analysis of continuum limit, etc.

Due to the publication of ETM 21, differences between Nf = 2 + 1 and 2+1+1 QCD are
now smaller and (within their errors) in agreement with expectations [72, 73]. The effect
of the charm quark is −0.6(8)% on w0 and −1.2(9)% on

√
t0 as computed from the FLAG

averages, while precision studies of the decoupling of charm quarks predicted generic effects of
a magnitude of only ≈ 0.2% [72, 73] for low-energy quantities. However, the agreement within
errors is due to large stretching factors. Taking just the individual results, they do not agree.
The differences are between Nf = 2+1 calculations and 2+1+1 calculations, but one can also
interpret them as a difference between staggered fermion simulations and Wilson-type ones.
Since the FLAG averages have changed quite a bit due to one more computation entering
the averages, we are looking forward to further and more precise results to see whether the
numbers hold up over time. In this respect, it is highly desirable for future computations to
also publish ratios such as

√
t0/w0 for which there are few numbers so far.

Such ratios of gradient flow scales are also of high interest in order to better understand
the specific discretization errors of gradient flow observables. So far, systematic studies and
information on the different contributions (see Sec. 11.4.2 and Ref. [45]) are missing. A
worrying result is, for example, the scale-setting study of Ref. [74] on ratios of scales. The
authors find indications that the asymptotic ∼ a2 scaling does not set in before a ≈ 0.05 fm
and the a = 0.04 fm data has a relevant influence on their continuum extrapolations.
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A final word concerns the physics scales that all results depend on. While the mass of the Ω
baryon is more popular than the leptonic decay rate of the pion, both have systematics which
are difficult to estimate. For the Ω baryon it is the contaminations by excited states and for
the decay rates it is the QED effects δf isoQCD

π . The uncertainty in Vud is not relevant at this
stage, but means that one is relying more on the standard model being an accurate low-energy
theory than in the case of the Ω mass. In principle, excited-state effects are controlled by
just going to large Euclidean time, but, in practice, this yields errors that are too large. One,
therefore, performs fits with a very small number of excitations while theoretically there is a
multitude of multi-hadron states that are expected to contribute. For the leptonic decay rate
of the pion, the situation is quite reversed, namely, the problematic QED contributions have
a well-motivated theory: chiral perturbation theory. The needed combination of low-energy
constants is not accessible from experiment but its large-N estimate [28] has been (indirectly)
confirmed by the recent computation of δf isoQCD

π [27]. Unfortunately the same comparison is
not so favourable for the leptonic Kaon decay.
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