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1 Quality criteria, averaging and error estimation

The essential characteristics of our approach to the problem of rating and averaging lattice
quantities have been outlined in our first publication [1]. Our aim is to help the reader assess
the reliability of a particular lattice result without necessarily studying the original article in
depth. This is a delicate issue, since the ratings may make things appear simpler than they
are. Nevertheless, it safeguards against the possibility of using lattice results, and drawing
physics conclusions from them, without a critical assessment of the quality of the various
calculations. We believe that, despite the risks, it is important to provide some compact
information about the quality of a calculation. We stress, however, the importance of the
accompanying detailed discussion of the results presented in the various sections of the present
review.

1.1 Systematic errors and colour code

The major sources of systematic error are common to most lattice calculations. These include,
as discussed in detail below, the chiral, continuum, and infinite-volume extrapolations. To
each such source of error for which systematic improvement is possible we assign one of three
coloured symbols: green star, unfilled green circle (which replaced in Ref. [2] the amber disk
used in the original FLAG review [1]) or red square. These correspond to the following ratings:

⋆ the parameter values and ranges used to generate the data sets allow for a satisfactory
control of the systematic uncertainties;

◦ the parameter values and ranges used to generate the data sets allow for a reasonable
attempt at estimating systematic uncertainties, which however could be improved;

■ the parameter values and ranges used to generate the data sets are unlikely to allow for
a reasonable control of systematic uncertainties.

The appearance of a red tag, even in a single source of systematic error of a given lattice
result, disqualifies it from inclusion in the global average.

Note that in the first two editions [1, 2], FLAG used the three symbols in order to rate the
reliability of the systematic errors attributed to a given result by the paper’s authors. Starting
with FLAG 16 [3] the meaning of the symbols has changed slightly—they now rate the quality
of a particular simulation, based on the values and range of the chosen parameters, and its
aptness to obtain well-controlled systematic uncertainties. They do not rate the quality of
the analysis performed by the authors of the publication. The latter question is deferred to
the relevant sections of the present review, which contain detailed discussions of the results
contributing (or not) to each FLAG average or estimate.

For most quantities the colour-coding system refers to the following sources of systematic
errors: (i) chiral extrapolation; (ii) continuum extrapolation; (iii) finite volume. As we will
see below, renormalization is another source of systematic uncertainties in several quantities.
This we also classify using the three coloured symbols listed above, but now with a different
rationale: they express how reliably these quantities are renormalized, from a field-theoretic
point of view (namely, nonperturbatively, or with 2-loop or 1-loop perturbation theory).

Given the sophisticated status that the field has attained, several aspects, besides those
rated by the coloured symbols, need to be evaluated before one can conclude whether a
particular analysis leads to results that should be included in an average or estimate. Some
of these aspects are not so easily expressible in terms of an adjustable parameter such as
the lattice spacing, the pion mass or the volume. As a result of such considerations, it
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sometimes occurs, albeit rarely, that a given result does not contribute to the FLAG average
or estimate, despite not carrying any red tags. This happens, for instance, whenever aspects
of the analysis appear to be incomplete (e.g., an incomplete error budget), so that the presence
of inadequately controlled systematic effects cannot be excluded. This mostly refers to results
with a statistical error only, or results in which the quoted error budget obviously fails to
account for an important contribution.

Of course, any colour coding has to be treated with caution; we emphasize that the criteria
are subjective and evolving. Sometimes, a single source of systematic error dominates the
systematic uncertainty and it is more important to reduce this uncertainty than to aim for
green stars for other sources of error. In spite of these caveats, we hope that our attempt to
introduce quality measures for lattice simulations will prove to be a useful guide. In addition,
we would like to stress that the agreement of lattice results obtained using different actions
and procedures provides further validation.

1.1.1 Systematic effects and rating criteria

The precise criteria used in determining the colour coding are unavoidably time-dependent;
as lattice calculations become more accurate, the standards against which they are measured
become tighter. For this reason FLAG reassesses criteria with each edition and as a result
some of the quality criteria (the one on chiral extrapolation for instance) have been tightened
up over time [1–4].

In the following, we present the rating criteria used in the current report. While these
criteria apply to most quantities without modification, there are cases where they need to
be amended or additional criteria need to be defined. For instance, the discussion of the
strong coupling constant in Sec. 9 requires tailored criteria for renormalization, perturbative
behaviour, and continuum extrapolation. Finally, in the section on nuclear matrix elements,
Sec. 10, the chiral extrapolation criterion is made slightly stronger, and a new criterion is
adopted for excited-state contributions. In such cases, the modified criteria are discussed in
the respective sections. Apart from only a few exceptions the following colour code applies
in the tables:

• Chiral extrapolation:

⋆ Mπ,min < 200 MeV, with three or more pion masses used in the extrapolation
or two values of Mπ with one lying within 10 MeV of 135 MeV (the physical neutral
pion mass) and the other one below 200 MeV

◦ 200 MeV ≤ Mπ,min ≤ 400 MeV, with three or more pion masses used in the
extrapolation
or two values of Mπ with Mπ,min < 200 MeV
or a single value of Mπ, lying within 10 MeV of 135 MeV (the physical neutral
pion mass)

■ otherwise

This criterion is unchanged from FLAG 19. In Sec. 10 the upper end of the range for
Mπ,min in the green circle criterion is lowered to 300 MeV, as in FLAG 19.

• Continuum extrapolation:

⋆ at least three lattice spacings and at least two points below 0.1 fm and a range of
lattice spacings satisfying [amax/amin]

2 ≥ 2
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◦ at least two lattice spacings and at least one point below 0.1 fm and a range of
lattice spacings satisfying [amax/amin]

2 ≥ 1.4
■ otherwise

It is assumed that the lattice action is O(a)-improved (i.e., the discretization errors van-
ish quadratically with the lattice spacing); otherwise this will be explicitly mentioned.
For unimproved actions an additional lattice spacing is required. This condition is
unchanged from FLAG 19.

• Finite-volume effects:
The finite-volume colour code used for a result is chosen to be the worse of the QCD
and the QED codes, as described below. If only QCD is used the QED colour code is
ignored.

– For QCD:

⋆ [Mπ,min/Mπ,fid]
2 exp{4−Mπ,min[L(Mπ,min)]max} < 1, or at least three volumes

◦ [Mπ,min/Mπ,fid]
2 exp{3−Mπ,min[L(Mπ,min)]max} < 1, or at least two volumes

■ otherwise

where we have introduced [L(Mπ,min)]max, which is the maximum box size used in the
simulations performed at the smallest pion mass Mπ,min, as well as a fiducial pion mass
Mπ,fid, which we set to 200 MeV (the cutoff value for a green star in the chiral extrap-
olation). It is assumed here that calculations are in the p-regime of chiral perturbation
theory, and that all volumes used exceed 2 fm. The rationale for this condition is as
follows. Finite-volume effects contain the universal factor exp{−MπL}, and if this were
the only contribution a criterion based on the values of Mπ,minL would be appropriate.
However, as pion masses decrease, one must also account for the weakening of the pion
couplings. In particular, 1-loop chiral perturbation theory [5] reveals a behaviour pro-
portional to M2

π exp{−MπL}. Our condition includes this weakening of the coupling,
and ensures, for example, that simulations with Mπ,min = 135 MeV and Mπ,minL = 3.2
are rated equivalently to those with Mπ,min = 200 MeV and Mπ,minL = 4.

– For QED (where applicable):

⋆ 1/([Mπ,minL(Mπ,min)]max)
nmin < 0.02, or at least four volumes

◦ 1/([Mπ,minL(Mπ,min)]max)
nmin < 0.04, or at least three volumes

■ otherwise

Because of the infrared-singular structure of QED, electromagnetic finite-volume effects
decay only like a power of the inverse spatial extent. In several cases like mass split-
tings [6, 7] or leptonic decays [8], the leading corrections are known to be universal,
i.e., independent of the structure of the involved hadrons. In such cases, the leading
universal effects can be directly subtracted exactly from the lattice data. We denote
nmin the smallest power of 1

L at which such a subtraction cannot be done. In the widely
used finite-volume formulation QEDL, one always has nmin ≤ 3 due to the nonlocality
of the theory [9]. The QED criteria are used here only in Sec. 4. Both QCD and QED
criteria are unchanged from FLAG 19.

• Isospin-breaking effects (where applicable):

⋆ all leading isospin-breaking effects are included in the lattice calculation

◦ isospin-breaking effects are included using the electro-quenched approximation
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■ otherwise

This criterion is used for quantities which are breaking isospin symmetry or which can be
determined at the sub-percent accuracy where isospin-breaking effects, if not included,
are expected to be the dominant source of uncertainty. In the current edition, this
criterion is only used for the up- and down-quark masses, and related quantities (ϵ, Q2

and R2). The criteria for isospin-breaking effects are unchanged from FLAG 19.

• Renormalization (where applicable):

⋆ nonperturbative

◦ 1-loop perturbation theory or higher with a reasonable estimate of truncation errors
■ otherwise

In Ref. [1], we assigned a red square to all results which were renormalized at 1-loop
in perturbation theory. In FLAG 13 [2], we decided that this was too restrictive, since
the error arising from renormalization constants, calculated in perturbation theory at
1-loop, is often estimated conservatively and reliably. These criteria have remained
unchanged since then.

• Renormalization Group (RG) running (where applicable):
For scale-dependent quantities, such as quark masses or BK , it is essential that contact
with continuum perturbation theory can be established. Various different methods are
used for this purpose (cf. Appendix A.3 in FLAG 19 [4]): Regularization-independent
Momentum Subtraction (RI/MOM), the Schrödinger functional, and direct compari-
son with (resummed) perturbation theory. Irrespective of the particular method used,
the uncertainty associated with the choice of intermediate renormalization scales in
the construction of physical observables must be brought under control. This is best
achieved by performing comparisons between nonperturbative and perturbative run-
ning over a reasonably broad range of scales. These comparisons were initially only
made in the Schrödinger functional approach, but are now also being performed in
RI/MOM schemes. We mark the data for which information about nonperturbative-
running checks is available and give some details, but do not attempt to translate this
into a colour code.

The pion mass plays an important role in the criteria relevant for chiral extrapolation
and finite volume. For some of the regularizations used, however, it is not a trivial matter
to identify this mass. In the case of twisted-mass fermions, discretization effects give rise
to a mass difference between charged and neutral pions even when the up- and down-quark
masses are equal: the charged pion is found to be the heavier of the two for twisted-mass
Wilson fermions (cf. Ref. [10]). In early works, typically referring to Nf = 2 simulations (e.g.,
Refs. [10] and [11]), chiral extrapolations are based on chiral perturbation theory formulae
which do not take these regularization effects into account. After the importance of accounting
for isospin breaking when doing chiral fits was shown in Ref. [12], later works, typically
referring to Nf = 2 + 1 + 1 simulations, have taken these effects into account [13]. We use
Mπ± for Mπ,min in the chiral-extrapolation rating criterion. On the other hand, we identify
Mπ,min with the root mean square (RMS) of Mπ+ , Mπ− and Mπ0 in the finite-volume rating
criterion.

In the case of staggered fermions, discretization effects give rise to several light states
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with the quantum numbers of the pion.1 The mass splitting among these “taste” partners
represents a discretization effect of O(a2), which can be significant at large lattice spacings
but shrinks as the spacing is reduced. In the discussion of the results obtained with staggered
quarks given in the following sections, we assume that these artifacts are under control. We
conservatively identify Mπ,min with the root mean square (RMS) average of the masses of all
the taste partners, both for chiral-extrapolation and finite-volume criteria.

In some of the simulations, the fermion formulations employed for the valence quarks are
different from those used for the sea quarks. Even when the fermion formulations are the
same, there are cases where the sea- and valence-quark masses differ. In such cases, we use
the smaller of the valence-valence and valence-sea Mπmin values in the finite-volume criteria,
since either of these channels may give the leading contribution depending on the quantity of
interest at the 1-loop level of chiral perturbation theory. For the chiral-extrapolation criteria,
on the other hand, we use the unitary point, where the sea- and valence-quark masses are the
same, to define Mπmin .

The strong coupling αs is computed in lattice QCD with methods differing substantially
from those used in the calculations of the other quantities discussed in this review. Therefore,
we have established separate criteria for αs results, which will be discussed in Sec. 9.2.1.

In Sec. 10 on nuclear matrix elements, an additional criterion is used. This concerns the
level of control over contamination from excited states, which is a more challenging issue
for nucleons than for mesons. In response to an improved understanding of the impact of
this contamination, the excited-state contamination criterion has been made more stringent
compared to that in FLAG 19.

1.1.2 Data-driven criteria

For some time, the FLAG working groups have been considering using a ‘data-driven’ criterion
in assessing how well the continuum limit is controlled. The quantity δ(a) is defined as

δ(a) ≡ |Q(a)−Q(0)|
σQ

, (1)

were Q(a) is the quantity under consideration with lattice spacing a, Q(0) is the extrapolated
continuum-limit value, and σQ is its error in the continuum limit. If amin is the smallest
lattice spacing used, there is concern if δ(amin) is very large. That is, the results at the finest
lattice spacing should not be too many standard deviations from the continuum limit in order
for the extrapolation to be considered reliable.

The following is adopted for the current edition of the review: (1) Each working group
attempts to determine δ(amin) for each calculation that contributes to a FLAG average.
However, it is not currently used as a criterion for inclusion in the averages. (2) The text of
the report includes these values for calculations contributing to FLAG averages. (3) For the
current edition of FLAG it is at the discretion of each working group to decide whether they
wish to inflate the error of contributions to the average for calculations with large values of
δ(amin). If this is done, the inflation factor will be

s(δ) = max[1, 1 + 2(δ − 3)/3]. (2)

The inflation of the error is not displayed in tables or plots. It is only used to evaluate FLAG
averages.

1We refer the interested reader to a number of reviews on the subject [14–18].
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1.1.3 Heavy-quark actions

For the b quark, the discretization of the heavy-quark action follows a very different approach
from that used for light flavours. There are several different methods for treating heavy
quarks on the lattice, each with its own issues and considerations. Most of these methods use
Effective Field Theory (EFT) at some point in the computation, either via direct simulation
of the EFT, or by using EFT as a tool to estimate the size of cutoff errors, or by using EFT to
extrapolate from the simulated lattice quark masses up to the physical b-quark mass. Because
of the use of an EFT, truncation errors must be considered together with discretization errors.

The charm quark lies at an intermediate point between the heavy and light quarks. In
our earlier reviews, the calculations involving charm quarks often treated it using one of the
approaches adopted for the b quark. Since FLAG 16 [3], however, most calculations simulate
the charm quark using light-quark actions. This has become possible thanks to the increasing
availability of dynamical gauge field ensembles with fine lattice spacings. But clearly, when
charm quarks are treated relativistically, discretization errors are more severe than those of
the corresponding light-quark quantities.

In order to address these complications, the heavy-quark section adds an additional, bi-
partite, treatment category to the rating system. The purpose of this criterion is to provide a
guideline for the level of action and operator improvement needed in each approach to make
reliable calculations possible, in principle.

A description of the different approaches to treating heavy quarks on the lattice can be
found in Appendix A.1.3 of FLAG 19 [4]. For truncation errors we use HQET power counting
throughout, since this review is focused on heavy-quark quantities involving B and D mesons
rather than bottomonium or charmonium quantities. Here we describe the criteria for how
each approach must be implemented in order to receive an acceptable rating (✓) for both the
heavy-quark actions and the weak operators. Heavy-quark implementations without the level
of improvement described below are rated not acceptable ( ■ ). The matching is evaluated
together with renormalization, using the renormalization criteria described in Sec. 2.1.1. We
emphasize that the heavy-quark implementations rated as acceptable and described below
have been validated in a variety of ways, such as via phenomenological agreement with exper-
imental measurements, consistency between independent lattice calculations, and numerical
studies of truncation errors. These tests are summarized in Sec. 8.

Relativistic heavy-quark actions:

✓ at least tree-level O(a)-improved action and weak operators
This is similar to the requirements for light-quark actions. All current implementations of
relativistic heavy-quark actions satisfy this criterion.

NRQCD:

✓ tree-level matched through O(1/mh) and improved through O(a2)
The current implementations of NRQCD satisfy this criterion, and also include tree-level cor-
rections of O(1/m2

h) in the action.

HQET:

✓ tree-level matched through O(1/mh) with discretization errors starting at O(a2)
The current implementation of HQET by the ALPHA collaboration satisfies this criterion,
since both action and weak operators are matched nonperturbatively through O(1/mh). Cal-
culations that exclusively use a static-limit action do not satisfy this criterion, since the
static-limit action, by definition, does not include 1/mh terms. We therefore include static
computations in our final estimates only if truncation errors (in 1/mh) are discussed and
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included in the systematic uncertainties.

Light-quark actions for heavy quarks:

✓ discretization errors starting at O(a2) or higher
This applies to calculations that use the twisted-mass Wilson action, a nonperturbatively
improved Wilson action, domain-wall fermions or the HISQ action for charm-quark quanti-
ties. It also applies to calculations that use these light-quark actions in the charm region and
above together with either the static limit or with an HQET-inspired extrapolation to obtain
results at the physical b-quark mass. In these cases, the combined list of lattice spacings used
for the data sets with mh > 0.5mh,phys must satisfy the continuum-extrapolation criteria.

1.1.4 Conventions for the figures

For a coherent assessment of the present situation, the quality of the data plays a key role, but
the colour coding cannot be carried over to the figures. On the other hand, simply showing
all data on equal footing might give the misleading impression that the overall consistency of
the information available on the lattice is questionable. Therefore, in the figures we indicate
the quality of the data in a rudimentary way, using the following symbols:

■ corresponds to results included in the average or estimate (i.e., results that contribute
to the black square below);

■□ corresponds to results that are not included in the average but pass all quality criteria;
□ corresponds to all other results;
■ corresponds to FLAG averages or estimates; they are also highlighted by a gray vertical

band.
The reason for not including a given result in the average is not always the same: the result
may fail one of the quality criteria; the paper may be unpublished; it may be superseded by
newer results; or it may not offer a complete error budget.

Symbols other than squares are used to distinguish results with specific properties and
are always explained in the caption.2

Often, nonlattice data are also shown in the figures for comparison. For these we use the
following symbols:

• corresponds to nonlattice results;
▲ corresponds to Particle Data Group (PDG) results.

1.2 Averages and estimates

FLAG results of a given quantity are denoted either as averages or as estimates. Here we
clarify this distinction. To start with, both averages and estimates are based on results without
any red tags in their colour coding. For many observables there are enough independent
lattice calculations of good quality, with all sources of error (not merely those related to the
colour-coded criteria), as analyzed in the original papers, appearing to be under control. In
such cases, it makes sense to average these results and propose such an average as the best
current lattice number. The averaging procedure applied to this data and the way the error
is obtained is explained in detail in Sec. 2.3. In those cases where only a sole result passes our
rating criteria (colour coding), we refer to it as our FLAG average, provided it also displays
adequate control of all other sources of systematic uncertainty.

2For example, for quark-mass results we distinguish between perturbative and nonperturbative renormal-
ization, and for heavy-flavour results we distinguish between those from leptonic and semileptonic decays.
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On the other hand, there are some cases in which this procedure leads to a result that,
in our opinion, does not cover all uncertainties. Systematic errors are by their nature often
subjective and difficult to estimate, and may thus end up being underestimated in one or
more results that receive green symbols for all explicitly tabulated criteria. Adopting a
conservative policy, in these cases we opt for an estimate (or a range), which we consider
as a fair assessment of the knowledge acquired on the lattice at present. This estimate is
not obtained with a prescribed mathematical procedure, but reflects what we consider the
best possible analysis of the available information. The hope is that this will encourage more
detailed investigations by the lattice community.

There are two other important criteria that also play a role in this respect, but that cannot
be colour coded, because a systematic improvement is not possible. These are: i) the publi-
cation status, and ii) the number of sea-quark flavours Nf . As far as the former criterion is
concerned, we adopt the following policy: we average only results that have been published in
peer-reviewed journals, i.e., they have been endorsed by referee(s). The only exception to this
rule consists in straightforward updates of previously published results, typically presented
in conference proceedings. Such updates, which supersede the corresponding results in the
published papers, are included in the averages. Note that updates of earlier results rely, at
least partially, on the same gauge-field-configuration ensembles. For this reason, we do not
average updates with earlier results. Nevertheless, all results are listed in the tables,3 and
their publication status is identified by the following symbols:

• Publication status:
A published or plain update of published results
P preprint
C conference contribution

In the present edition, the publication status on the 30th of April 2024 is relevant. If the
paper appeared in print after that date, this is accounted for in the bibliography, but does
not affect the averages.4

As noted above, in this review we present results from simulations with Nf = 2, Nf = 2+1
and Nf = 2 + 1 + 1 (except for r0ΛMS where we also give the Nf = 0 result). We are not
aware of an a priori way to quantitatively estimate the difference between results produced
in simulations with a different number of dynamical quarks. We therefore average results at
fixed Nf separately; averages of calculations with different Nf are not provided.

To date, no significant differences between results with different values of Nf have been
observed in the quantities listed in Tabs. 1, 2, 3, and 4. In particular, differences between
results from simulations with Nf = 2 and Nf = 2 + 1 would reflect Zweig-rule violations
related to strange-quark loops. Although not of direct phenomenological relevance, the size
of such violations is an interesting theoretical issue per se, and one that can be quantitatively
addressed only with lattice calculations. It remains to be seen whether the status presented
here will change in the future, since this will require dedicated Nf = 2 and Nf = 2 + 1
calculations, which are not a priority of present lattice work.

The question of differences between results with Nf = 2 + 1 and Nf = 2 + 1 + 1 is more
subtle. The dominant effect of including the charm sea quark is to shift the lattice scale, an

3Whenever tables and figures turn out to be overcrowded, older, superseded results are omitted. However,
all the most recent results from each collaboration are displayed.

4As noted above in footnote 1, two exceptions to this deadline were made, Refs. [19, 20].
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effect that is accounted for by fixing this scale nonperturbatively using physical quantities.
For most of the quantities discussed in this review, it is expected that residual effects are small
in the continuum limit, suppressed by αs(mc) and powers of Λ2/m2

c . Here Λ is a hadronic
scale that can only be roughly estimated and depends on the process under consideration.
Note that the Λ2/m2

c effects have been addressed in Refs. [21–25], and were found to be small
for the quantities considered. Assuming that such effects are generically small, it might be
reasonable to average the results from Nf = 2 + 1 and Nf = 2 + 1 + 1 simulations, although
we do not do so here.

1.3 Averaging procedure and error analysis

In the present report, we repeatedly average results obtained by different collaborations, and
estimate the error on the resulting averages. Here we provide details on how averages are
obtained.

1.3.1 Averaging — generic case

We continue to follow the procedure of FLAG 13 and FLAG 16 [2, 3] which we describe here
in full detail.

One of the problems arising when forming averages is that not all of the data sets are in-
dependent. In particular, the same gauge-field configurations, produced with a given fermion
discretization, are often used by different research teams with different valence-quark lattice
actions, obtaining results that are not really independent. Our averaging procedure takes
such correlations into account.

Consider a given measurable quantity Q, measured by M distinct, not necessarily un-
correlated, numerical experiments (simulations). The result of each of these measurement is
expressed as

Qi = xi ± σ
(1)
i ± σ

(2)
i ± · · · ± σ

(E)
i , (3)

where xi is the value obtained by the ith experiment (i = 1, · · · ,M) and σ
(α)
i (for α =

1, · · · , E) are the various errors. Typically σ
(1)
i stands for the statistical error and σ

(α)
i

(α ≥ 2) are the different systematic errors from various sources. For each individual result,
we estimate the total error σi by adding statistical and systematic errors in quadrature:

Qi = xi ± σi ,

σi ≡

√√√√ E∑
α=1

[
σ
(α)
i

]2
. (4)

With the weight factor of each total error estimated in standard fashion,

ωi =
σ−2
i∑M

i=1 σ
−2
i

, (5)

the central value of the average over all simulations is given by

xav =

M∑
i=1

xi ωi . (6)
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The above central value corresponds to a χ2
min-weighted average, evaluated by adding statis-

tical and systematic errors in quadrature. If the fit is not of good quality (χ2
min/dof > 1), the

statistical and systematic error bars are stretched by a factor S =
√

χ2/dof.
Next, we examine error budgets for individual calculations and look for potentially cor-

related uncertainties. Specific problems encountered in connection with correlations between
different data sets are described in the text that accompanies the averaging. If there is reason
to believe that a source of error is correlated between two calculations, a 100% correlation is
assumed. The covariance matrix Cij for the set of correlated lattice results is estimated by a
prescription due to Schmelling [26]. This consists in defining

σi;j =

√∑
α

′[
σ
(α)
i

]2
, (7)

with
∑′

α running only over those errors of xi that are correlated with the corresponding errors
of the measurement xj . This expresses the part of the uncertainty in xi that is correlated
with the uncertainty in xj . If no such correlations are known to exist, then we take σi;j = 0.
The diagonal and off-diagonal elements of the covariance matrix are then taken to be

Cii = σ2
i (i = 1, · · · ,M) ,

Cij = σi;j σj;i (i ̸= j) . (8)

Finally, the error of the average is estimated by

σ2
av =

M∑
i=1

M∑
j=1

ωi ωj Cij , (9)

and the FLAG average is
Qav = xav ± σav . (10)

1.3.2 Nested averaging

We have encountered one case where the correlations between results are more involved, and
a nested averaging scheme is required. This concerns the B-meson bag parameters discussed
in Sec. 8.2. In the following, we describe the details of the nested averaging scheme. This is
an updated version of the section added in the web update of the FLAG 16 report.

The issue arises for a quantity Q that is given by a ratio, Q = Y/Z. In most simulations,
both Y and Z are calculated, and the error in Q can be obtained in each simulation in the
standard way. However, in other simulations only Y is calculated, with Z taken from a global
average of some type. The issue to be addressed is that this average value Z has errors that
are correlated with those in Q.

In the example that arises in Sec. 8.2, Q = BB, Y = BBf
2
B and Z = f2

B. In one of the
simulations that contribute to the average, Z is replaced by Z, the PDG average for f2

B [27]
(obtained with an averaging procedure similar to that used by FLAG). This simulation is
labeled with i = 1, so that

Q1 =
Y1

Z
. (11)
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The other simulations have results labeled Qj , with j ≥ 2. In this set up, the issue is that Z
is correlated with the Qj , j ≥ 2.5

We begin by decomposing the error in Q1 in the same schematic form as above,

Q1 = x1 ±
σ
(1)
Y1

Z
±

σ
(2)
Y1

Z
± · · · ±

σ
(E)
Y1

Z
±

Y1σZ

Z
2 . (12)

Here the last term represents the error propagating from that in Z, while the others arise
from errors in Y1. For the remaining Qj (j ≥ 2) the decomposition is as in Eq. (3). The total
error of Q1 then reads

σ2
1 =

(
σ
(1)
Y1

Z

)2

+

(
σ
(2)
Y1

Z

)2

+ · · ·+

(
σ
(E)
Y1

Z

)2

+

(
Y1

Z
2

)2

σ2
Z
, (13)

while that for the Qj (j ≥ 2) is

σ2
j =

(
σ
(1)
j

)2
+
(
σ
(2)
j

)2
+ · · ·+

(
σ
(E)
j

)2
. (14)

Correlations between Qj and Qk (j, k ≥ 2) are taken care of by Schmelling’s prescription, as
explained above. What is new here is how the correlations between Q1 and Qj (j ≥ 2) are
taken into account.

To proceed, we recall from Eq. (9) that σZ is given by

σ2
Z
=

M ′∑
i′,j′=1

ω[Z]i′ω[Z]j′C[Z]i′j′ . (15)

Here the indices i′ and j′ run over the M ′ simulations that contribute to Z, which, in general,
are different from those contributing to the results for Q. The weights ω[Z] and covariance
matrix C[Z] are given an explicit argument Z to emphasize that they refer to the calculation
of this quantity and not to that of Q. C[Z] is calculated using the Schmelling prescription

[Eqs. (7)–(9)] in terms of the errors, σ[Z]
(α)
i′ , taking into account the correlations between the

different calculations of Z.
We now generalize Schmelling’s prescription for σi;j , Eq. (7), to that for σ1;k (k ≥ 2), i.e.,

the part of the error in Q1 that is correlated with Qk. We take

σ1;k =

√√√√ 1

Z
2

′∑
(α)↔k

[
σ
(α)
Y1

]2
+

Y 2
1

Z
4

M ′∑
i′,j′

ω[Z]i′ω[Z]j′C[Z]i′j′↔k . (16)

The first term under the square root sums those sources of error in Y1 that are correlated
with Qk. Here we are using a more explicit notation from that in Eq. (7), with (α) ↔ k

indicating that the sum is restricted to the values of α for which the error σ
(α)
Y1

is correlated

5There is also a small correlation between Y1 and Z, but we follow the original Ref. [28] and do not take
this into account. Thus, the error in Q1 is obtained by simple error propagation from those in Y1 and Z.
Ignoring this correlation is conservative, because, as in the calculation of BK , the correlations between BBf

2
B

and f2
B tend to lead to a cancellation of errors. By ignoring this effect we are making a small overestimate of

the error in Q1.
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with Qk. The second term accounts for the correlations within Z with Qk, and is the nested
part of the present scheme. The new matrix C[Z]i′j′↔k is a restriction of the full covariance
matrix C[Z], and is defined as follows. Its diagonal elements are given by

C[Z]i′i′↔k = (σ[Z]i′↔k)
2 (i′ = 1, · · · ,M ′) , (17)

(σ[Z]i′↔k)
2 =

′∑
(α)↔k

(σ[Z]
(α)
i′ )2, (18)

where the summation
∑′

(α)↔k over (α) is restricted to those σ[Z]
(α)
i′ that are correlated with

Qk. The off-diagonal elements are

C[Z]i′j′↔k = σ[Z]i′;j′↔k σ[Z]j′;i′↔k (i′ ̸= j′) , (19)

σ[Z]i′;j′↔k =

√√√√ ′∑
(α)↔j′k

(σ[Z]
(α)
i′ )2, (20)

where the summation
∑′

(α)↔j′k over (α) is restricted to σ[Z]
(α)
i′ that are correlated with both

Zj′ and Qk.
The last quantity that we need to define is σk;1.

σk;1 =

√√√√ ′∑
(α)↔1

[
σ
(α)
k

]2
, (21)

where the summation
∑′

(α)↔1 is restricted to those σ
(α)
k that are correlated with one of the

terms in Eq. (13).
In summary, we construct the covariance matrix Cij using Eq. (8), as in the generic case,

except the expressions for σ1;k and σk;1 are now given by Eqs. (16) and (21), respectively. All
other σi;j are given by the original Schmelling prescription, Eq. (7). In this way, we extend
the philosophy of Schmelling’s approach while accounting for the more involved correlations.
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