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A List of acronyms

BχPT baryonic chiral perturbation the-
ory

BCL Bourrely-Caprini-Lellouch
BGL Boyd-Grinstein-Lebed
BK Becirevic-Kaidalov
BSM beyond standard model
BZ Ball-Zwicky
χPT chiral perturbation theory
CKM Cabibbo-Kobayashi-Maskawa
CLN Caprini-Lellouch-Neubert
CP charge-parity
CPT charge-parity-time reversal
CVC conserved vector current
DSDR dislocation suppressing determi-

nant ratio
DW domain wall
DWF domain wall fermion
EDM electric dipole moment
EFT effective field theory
EM electromagnetic
ESC excited state contributions
EW electroweak
FCNC flavour-changing neutral current
FH Feynman-Hellman
FSE finite-size effects
FV finite volume
GF gradient flow
GGOU Gambino-Giordano-Ossola-

Uraltsev
GRS Gasser-Rusetsky-Scimemi
HEX hypercubic stout
HISQ highly-improved staggered

quarks
HMχPT heavy-meson chiral perturbation

theory
HMC hybrid Monte Carlo
HMrSχPTheavy-meson rooted staggered

chiral perturbation theory
HQET heavy-quark effective theory
IR infrared
isoQCD isospin-symmetric QCD
LD long distance
LEC low-energy constant

LO leading order
LW Lüscher-Weisz
MC Monte Carlo
MM minimal MOM
MOM momentum subtraction

MS modified minimal substraction
scheme

NDR naive dimensional regularization
nEDM nucleon electric dipole moment
NGB Nambu-Goldstone bosons
NLO next-to-leading order
NME nucleon matrix elements
NNLO next-to-next-to-leading order
NP nonperturbative
npHQET nonperturbative heavy-quark ef-

fective theory
NRQCD nonrelativistic QCD
NSPT numerical stochastic perturba-

tion theory
OPE operator product expansion
PCAC partially-conserved axial current
PDF parton distribution function
PDG particle data group
QCD quantum chromodynamics
QED quantum electrodynamics
QEDL formulation of QED in finite vol-

ume (see [1])
QEDTL formulation of QED in finite vol-

ume (see [2])
RG renormalization group
RGI renormalization group invariant
RH R. Hill
RHQ relativistic heavy-quark
RHQA relativistic heavy-quark action
RI-MOM regularization-independent

momentum subtraction (also
RI/MOM)

RI-
SMOM

regularization-independent
symmetric momentum (also
RI/SMOM)

RMS root mean square
SχPT staggered chiral perturbation

theory
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SD short distance
SF Schrödinger functional
SIDIS semi-inclusive deep-inelastic

scattering
SM standard model
SSF step-scaling function
SUSY supersymmetric
SW Sheikholeslami-Wohlert
UT unitarity triangle
UV ultraviolet
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B Appendix

B.1 Inclusion of electromagnetic effects

Electromagnetism on a lattice can be formulated using a naive discretization of the Maxwell
action S[Aµ] =

1
4

∫
d4x

∑
µ,ν [∂µAν(x)− ∂νAµ(x)]

2. Even in its noncompact form, the action
remains gauge invariant. This is not the case for non-Abelian theories for which one uses the
traditional compact Wilson gauge action (or an improved version of it). Compact actions for
QED feature spurious photon-photon interactions which vanish only in the continuum limit.
This is one of the main reason why the noncompact action is the most popular so far. It was
used in all the calculations presented in this review. Gauge-fixing is necessary for noncompact
actions because of the usual infinite measure of equivalent gauge orbits which contribute to
the path integral. It was shown [3, 4] that gauge-fixing is not necessary with compact actions,
including in the construction of interpolating operators for charged states.

Although discretization is straightforward, simulating QED in a finite volume is more
challenging. Indeed, the long range nature of the interaction suggests that important finite-
size effects have to be expected. In the case of periodic boundary conditions, the situation
is even more critical: a naive implementation of the theory features an isolated zero-mode
singularity in the photon propagator. It was first proposed in [5] to fix the global zero-mode
of the photon field Aµ(x) in order to remove it from the dynamics. This modified theory
is generally named QEDTL. Although this procedure regularizes the theory and has the
right classical infinite-volume limit, it is nonlocal because of the zero-mode fixing. As first
discussed in [6], the nonlocality in time of QEDTL prevents the existence of a transfer matrix,
and therefore a quantum-mechanical interpretation of the theory. Another prescription named
QEDL, proposed in [1], is to remove the zero-mode of Aµ(x) independently for each time slice.
This theory, although still nonlocal in space, is local in time and has a well-defined transfer
matrix. Whether these nonlocalities constitute an issue to extract infinite-volume physics
from lattice-QCD+QEDL simulations is, at the time of this review, still an open question.
However, it is known through analytical calculations of electromagnetic finite-size effects at
O(α) in hadron masses [1, 6–12], meson leptonic decays [10, 12], and the hadronic vacuum
polarization [13] that QEDL does not suffer from a problematic (e.g., UV divergent) coupling
of short- and long-distance physics due to its nonlocality, and is likely safe to use for these
quantities. Another strategy, first proposed in [14] and used by the QCDSF collaboration, is
to bound the zero-mode fluctuations to a finite range. Although more minimal, it is still a
nonlocal modification of the theory and so far finite-size effects for this scheme have not been
investigated. Two proposals for local formulations of finite-volume QED emerged. The first
one described in [15] proposes to use massive photons to regulate zero-mode singularities, at
the price of (softly) breaking gauge invariance. The second one presented in [4], based on
earlier works [16, 17], avoids the zero-mode issue by using anti-periodic boundary conditions
for Aµ(x). In this approach, gauge invariance requires the fermion field to undergo a charge
conjugation transformation over a period, breaking electric charge conservation. These local
approaches have the potential to constitute cleaner approaches to finite-volume QED. They
have led to first numerical studies at unphysical masses [18, 19], but were not used in any
calculation reviewed in this paper.

Once a finite-volume theory for QED is specified, there are various ways to compute QED
effects themselves on a given hadronic quantity. The most direct approach, first used in [5],
is to include QED directly in the lattice simulations and assemble correlation functions from
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charged quark propagators. Another approach proposed in [7], is to exploit the perturbative
nature of QED, and compute the leading-order corrections directly in pure QCD as matrix
elements of the electromagnetic current. Both approaches have their advantages and disad-
vantages and as shown in [20], are not mutually exclusive. A critical comparative study can
be found in [21].

Finally, most of the calculations presented here made the choice of computing electromag-
netic corrections in the electro-quenched approximation. In this limit, one assumes that only
valence quarks are charged, which is equivalent to neglecting QED corrections to the fermionic
determinant. This approximation reduces dramatically the cost of lattice-QCD+QED calcu-
lations since it allows the reuse of previously generated QCD configurations. If QED is intro-
duced pertubatively through current insertions, the electro-quenched approximation avoids
computing disconnected contributions coming from the electromagnetic current in the vac-
uum, which are generally challenging to determine precisely. The electromagnetic contribu-
tions from sea quarks to hadron-mass splittings are known to be flavour-SU(3) and large-Nc

suppressed, thus electro-quenched simulations are expected to have an O(10%) accuracy for
the leading electromagnetic effects. This suppression is in principle rather weak and results
obtained from electro-quenched simulations might feature uncontrolled systematic errors. For
this reason, the use of the electro-quenched approximation constitutes the difference between
⋆ and ◦ in the FLAG criterion for the inclusion of isospin-breaking effects.

B.2 Parameterizations of semileptonic form factors

In this section, we discuss the description of the q2-dependence of form factors, using the
vector form factor f+ of B → πℓν decays as a benchmark case. Since in this channel the
parameterization of the q2-dependence is crucial for the extraction of |Vub| from the existing
measurements (involving decays to light leptons), as explained above, it has been studied
in great detail in the literature. Some comments about the generalization of the techniques
involved will follow.

The vector form factor for B → πℓν All form factors are analytic functions of q2 out-
side physical poles and inelastic threshold branch points; in the case of B → πℓν, the only
pole expected below the Bπ production region, starting at q2 = t+ = (mB + mπ)

2, is the
B∗. A simple ansatz for the q2-dependence of the B → πℓν semileptonic form factors that
incorporates vector-meson dominance is the Bečirević-Kaidalov (BK) parameterization [22],
which for the vector form factor reads:

f+(q
2) =

f(0)

(1− q2/m2
B∗)(1− αq2/m2

B∗)
. (516)

Because the BK ansatz has few free parameters, it has been used extensively to parameterize
the shape of experimental branching-fraction measurements and theoretical form-factor calcu-
lations. A variant of this parameterization proposed by Ball and Zwicky (BZ) adds extra pole
factors to the expressions in Eq. (516) in order to mimic the effect of multiparticle states [23].
A similar idea, extending the use of effective poles also to D → πℓν decays, is explored in
Ref. [24]. Finally, yet another variant (RH) has been proposed by Hill in Ref. [25]. Although
all of these parameterizations capture some known properties of form factors, they do not
manifestly satisfy others. For example, perturbative QCD scaling constrains the behaviour
of f+ in the deep Euclidean region [26–28], and angular momentum conservation constrains
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the asymptotic behaviour near thresholds—e.g., Im f+(q
2) ∼ (q2− t+)

3/2 (see, e.g., Ref. [29]).
Most importantly, these parameterizations do not allow for an easy quantification of system-
atic uncertainties.

A more systematic approach that improves upon the use of simple models for the q2

behaviour exploits the positivity and analyticity properties of two-point functions of vector
currents to obtain optimal parameterizations of form factors [28, 30–35]. Any form factor f
can be shown to admit a series expansion of the form

f(q2) =
1

B(q2)ϕ(q2, t0)

∞∑
n=0

an(t0) z(q
2, t0)

n , (517)

where the squared momentum transfer is replaced by the variable

z(q2, t0) =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

. (518)

This is a conformal transformation, depending on an arbitrary real parameter t0 < t+, that
maps the q2 plane cut for q2 ≥ t+ onto the disk |z(q2, t0)| < 1 in the z complex plane. The
function B(q2) is called the Blaschke factor, and contains poles and cuts below t+ — for
instance, in the case of B → π decays,

B(q2) =
z(q2, t0)− z(m2

B∗ , t0)

1− z(q2, t0)z(m2
B∗ , t0)

= z(q2,m2
B∗) . (519)

Finally, the quantity ϕ(q2, t0), called the outer function, is some otherwise arbitrary function
that does not introduce further poles or branch cuts. The crucial property of this series
expansion is that the sum of the squares of the coefficients

∞∑
n=0

a2n =
1

2πi

∮
dz

z
|B(z)ϕ(z)f(z)|2 , (520)

is a finite quantity. Therefore, by using this parameterization an absolute bound to the
uncertainty induced by truncating the series can be obtained. The aim in choosing ϕ is to
obtain a bound that is useful in practice, while (ideally) preserving the correct behaviour of
the form factor at high q2 and around thresholds.

The simplest form of the bound would correspond to
∑∞

n=0 a
2
n = 1. Imposing this bound

yields the following “standard” choice for the outer function

ϕ(q2, t0) =

√
1

32πχ1−(0)

(√
t+ − q2 +

√
t+ − t0

)
×

(√
t+ − q2 +

√
t+ − t−

)3/2 (√
t+ − q2 +

√
t+

)−5 t+ − q2

(t+ − t0)1/4
,

(521)

where t− = (mB − mπ)
2, and χ1−(0) is the derivative of the transverse component of the

polarization function (i.e., the Fourier transform of the vector two-point function) Πµν(q)
at Euclidean momentum Q2 = −q2 = 0. It is computed perturbatively, using operator
product expansion techniques, by relating the B → πℓν decay amplitude to ℓν → Bπ inelastic
scattering via crossing symmetry and reproducing the correct value of the inclusive ℓν → Xb
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amplitude. We will refer to the series parameterization with the outer function in Eq. (521)
as Boyd, Grinstein, and Lebed (BGL). The perturbative and OPE truncations imply that the
bound is not strict, and one should take it as

N∑
n=0

a2n ≲ 1 , (522)

where this holds for any choice of N . Since the values of |z| in the kinematical region of
interest are well below 1 for judicious choices of t0, this provides a very stringent bound
on systematic uncertainties related to truncation for N ≥ 2. On the other hand, the outer
function in Eq. (521) is somewhat unwieldy and, more relevantly, spoils the correct large q2

behaviour and induces an unphysical singularity at the Bπ threshold.
A simpler choice of outer function has been proposed by Bourrely, Caprini and Lellouch

(BCL) in Ref. [29], which leads to a parameterization of the form

f+(q
2) =

1

1− q2/m2
B∗

N∑
n=0

a+n (t0)z(q
2, t0)

n . (523)

This satisfies all the basic properties of the form factor, at the price of changing the expression
for the bound to

N∑
j,k=0

Bjk(t0)a
+
j (t0)a

+
k (t0) ≤ 1 . (524)

The constants Bjk can be computed and shown to be |Bjk| ≲ O(10−2) for judicious choices
of t0; therefore, one again finds that truncating at N ≥ 2 provides sufficiently stringent
bounds for the current level of experimental and theoretical precision. It is actually possible
to optimize the properties of the expansion by taking

t0 = topt = (mB +mπ)(
√
mB −

√
mπ)

2 , (525)

which for physical values of the masses results in the semileptonic domain being mapped
onto the symmetric interval |z| ∼< 0.279 (where this range differs slightly for the B± and B0

decay channels), minimizing the maximum truncation error. If one also imposes that the
asymptotic behaviour Im f+(q

2) ∼ (q2 − t+)
3/2 near threshold is satisfied, then the highest-

order coefficient is further constrained as

a+N = − (−1)N

N

N−1∑
n=0

(−1)n na+n . (526)

Substituting the above constraint on a+N into Eq. (523) leads to the constrained BCL param-
eterization

f+(q
2) =

1

1− q2/m2
B∗

N−1∑
n=0

a+n

[
zn − (−1)n−N n

N
zN

]
, (527)

which is the standard implementation of the BCL parameterization used in the literature.
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Parameterizations of the BGL and BCL kind, to which we will refer collectively as “z-
parameterizations”, have already been adopted by the BaBar and Belle collaborations to
report their results, and also by the Heavy Flavour Averaging Group (HFAG, later renamed
HFLAV). Some lattice collaborations, such as FNAL/MILC and ALPHA, have already started
to report their results for form factors in this way. The emerging trend is to use the BCL pa-
rameterization as a standard way of presenting results for the q2-dependence of semileptonic
form factors. Our policy will be to quote results for z-parameterizations when the latter are
provided in the paper (including the covariance matrix of the fits); when this is not the case,
but the published form factors include the full correlation matrix for values at different q2, we
will perform our own fit to the constrained BCL ansatz in Eq. (527); otherwise no fit will be
quoted. We however stress the importance of providing, apart from parameterization coeffi-
cients, values for the form factors themselves (in the continuum limit and at physical quark
masses) for a number of values of q2, so that the results can be independently parameterized
by the readers if so wished.

The scalar form factor for B → πℓν The discussion of the scalar B → π form factor is
very similar. The main differences are the absence of a constraint analogue to Eq. (526) and
the choice of the overall pole function. In our fits we adopt the simple expansion:

f0(q
2) =

N−1∑
n=0

a0n zn . (528)

We do impose the exact kinematical constraint f+(0) = f0(0) by expressing the a0N−1 coeffi-
cient in terms of all remaining a+n and a0n coefficients. This constraint introduces important
correlations between the a+n and a0n coefficients; thus only lattice calculations that present the
correlations between the vector and scalar form factors can be used in an average that takes
into account the constraint at q2 = 0.

Finally we point out that we do not need to use the same number of parameters for the
vector and scalar form factors. For instance, with (N+ = 3, N0 = 3) we have a+0,1,2 and a00,1,

while with (N+ = 3, N0 = 4) we have a+0,1,2 and a00,1,2 as independent fit parameters. In our
average we will choose the combination that optimizes uncertainties.

Extension to other form factors The discussion above largely extends to form factors

for other semileptonic transitions (e.g., Bs → K and B(s) → D
(∗)
(s) , and semileptonic D and K

decays). Details are discussed in the relevant sections.
A general discussion of semileptonic meson decay in this context can be found, e.g., in

Ref. [36]. Extending what has been discussed above for B → π, the form factors for a
generic H → L transition will display a cut starting at the production threshold t+, and
the optimal value of t0 required in z-parameterizations is t0 = t+(1 −

√
1− t−/t+) (where

t± = (mH ±mL)
2). For unitarity bounds to apply, the Blaschke factor has to include all sub-

threshold poles with the quantum numbers of the hadronic current — i.e., vector (resp. scalar)
resonances in Bπ scattering for the vector (resp. scalar) form factors of B → π, Bs → K, or
Λb → p; and vector (resp. scalar) resonances in Bcπ scattering for the vector (resp. scalar)
form factors of B → D or Λb → Λc.

1 Thus, as emphasized above, the control over systematic

1A more complicated analytic structure may arise in other cases, such as channels with vector mesons in
the final state. We will however not discuss form-factor parameterizations for any such process.
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uncertainties brought in by using z-parameterizations strongly depends on implementation
details. This has practical consequences, in particular, when the resonance spectrum in a given
channel is not sufficiently well-known. Caveats may also apply for channels where resonances
with a nonnegligible width appear. A further issue is whether t+ = (mH +mL)

2 is the proper
choice for the start of the cut in cases such as Bs → Kℓν and B → Dℓν, where there are
lighter two-particle states that project on the current (B,π and Bc,π for the two processes,
respectively).2 In any such situation, it is not clear a priori that a given z-parameterization
will satisfy strict bounds, as has been seen, e.g., in determinations of the proton charge radius
from electron-proton scattering [37–39].

The HPQCD collaboration pioneered a variation on the z-parameterization approach,
which they refer to as a “modified z-expansion,” that is used to simultaneously extrapolate
their lattice simulation data to the physical light-quark masses and the continuum limit, and
to interpolate/extrapolate their lattice data in q2. This entails allowing the coefficients an
to depend on the light-quark masses, squared lattice spacing, and, in some cases the charm-
quark mass and pion or kaon energy. Because the modified z-expansion is not derived from an
underlying effective field theory, there are several potential concerns with this approach that
have yet to be studied. The most significant is that there is no theoretical derivation relating
the coefficients of the modified z-expansion to those of the physical coefficients measured
in experiment; it therefore introduces an unquantified model dependence in the form-factor
shape. As a result, the applicability of unitarity bounds has to be examined carefully. Related
to this, z-parameterization coefficients implicitly depend on quark masses, and particular care
should be taken in the event that some state can move across the inelastic threshold as quark
masses are changed (which would in turn also affect the form of the Blaschke factor). Also, the
lattice-spacing dependence of form factors provided by Symanzik effective theory techniques
may not extend trivially to z-parameterization coefficients. The modified z-expansion is now
being utilized by collaborations other than HPQCD and for quantities other than D → πℓν
and D → Kℓν, where it was originally employed. We advise treating results that utilize the
modified z-expansion to obtain form-factor shapes and CKM matrix elements with caution,
however, since the systematics of this approach warrant further study.

Choice of form-factor basis for chiral-continuum extrapolations For pseudoscalar-
to-pseudoscalar transitions P1 → P2 (such as B → π or Bs → K), the chiral and continuum
extrapolations have often been performed in a different basis f∥, f⊥ given by [40]

⟨P2(p
′)|V µ|P1(p)⟩ =

√
2M1[v

µf∥(E2) + p′µ⊥f⊥(E2)]. (529)

Here, vµ = pµ/M1 is the initial-meson four-velocity, p′µ⊥ = p′µ − (v · p′)vµ is the projection
of the final-meson momentum in the direction perpendicular to vµ, and the form factors are
taken to be functions of E2 = v · p′ (the energy of the final-state meson in the initial-meson
rest frame). After the chiral and continuum extrapolations, the standard form factors are
then constructed as the linear combinations

f0(q
2) =

√
2M1

M2
1 −M2

2

[
(M1 − E2)f∥(E2) + (E2

2 −M2
K)f⊥(E2)

]
, (530)

f+(q
2) =

1√
2M1

[
f∥(E2) + (M1 − E2)f⊥(E2)

]
. (531)

2We are grateful to G. Herdóıza, R.J. Hill, A. Kronfeld and A. Szczepaniak for illuminating discussions on
this issue.
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The decomposition (529) is motivated by heavy-meson chiral perturbation theory and is also
convenient for the extraction of the form factors from the correlation functions. For example,
for B → π, heavy-meson chiral perturbation theory predicts, at leading-order in both the
chiral and the heavy-quark expansion,

f⊥(Eπ) =
1

fπ

gB∗Bπ

Eπ +∆B∗
, (532)

f∥(Eπ) =
1

fπ
, (533)

where ∆B∗ = MB∗ − MB. For a general transition P1 → P2, the chiral and continuum
extrapolations were therefore commonly performed by fitting functions of the form

f⊥(E2) =
1

E2 +∆⊥

[
...

]
(534)

and

f∥(E2) =
1

E2 +∆∥

[
...

]
or f∥(E2) =

[
...

]
(535)

with ∆⊥ = M1− −M1 and ∆∥ = M0+ −M1, where M1− and M0+ denote the masses of the

bound states with JP = 1− and JP = 0+ that couple to the weak current, and the ellipsis in
the brackets denote terms describing the remaining dependence on the quark masses, lattice
spacing, and kinematics. The terms in front of the brackets introduce poles at E2 = −∆,
which corresponds to q2 ≈ M2

JP for large M1. Depending on the process, there may be no
QCD-stable bound state with JP = 0+, in which case this pole factor for f∥ is usually omitted.

A problem with the above prescription is that, for finite heavy-quark mass, the JP quan-
tum numbers of the poles appearing in the form factors are definite only in the helicity basis
of the form factors, with JP = 1− for f+ and JP = 0 for f0. In particular, the form factor
f∥, being a linear combination of f+ and f0, also has a pole at the lower mass M1− that is
neglected when using the above functions. The alternative is to perform the chiral-continuum
extrapolations for f+ and f0 using

f+(E2) =
1

E2 +∆+

[
...

]
(536)

and

f0(E2) =
1

E2 +∆0

[
...

]
or f0(E2) =

[
...

]
, (537)

where ∆+ = M1− − M1 and ∆0 = M0+ − M1 now truly correspond to the lowest pole in
each form factor. The authors of Ref. [41] found that this method (in the case of Bs → K
form factors) yields significantly different results for the extrapolated f0 when compared to
extrapolating f∥, f⊥ and then reconstructing f+ and f0. Lattice determinations of the form
factors based on extrapolations of f∥, f⊥ may therefore have an uncontrolled systematic error,
and directly extrapolating f+ and f0 appears to be the better choice.
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B.3 Explicit parameterizations used in the form factor fits

In order to reconstruct the form factors from the results of fits performed using a z-parameterization
it is necessary not only to use the correct version of the parameterization but also to adopt
exactly the same numerical values for all ancillary quantities that enter the fit (e.g., location of
poles). In particular, users must avoid utilizing the most updated numerical inputs for these
quantities with z-coefficients extracted using older values. The purpose of this appendix is to
eliminate all ambiguities in the implementation of the fit results presented in Secs. 7 and 8.

B.3.1 D → K form factors

BCL parameterization:

f+(q
2) =

1

1− q2/m2
D∗

s

N+−1∑
n=0

a+n

[
zn − (−1)n−N+ n

N+
zN

]
, (538)

f0(q
2) =

1

1− q2/m2
D∗

s (0
+)

N0−1∑
n=0

a0nz
n . (539)

The kinematical constraint f+(0) = f0(0) is implemented expressing a0N0−1 in terms of the

other coefficients. We use t+ = (mD +mK)2, t− = (mD −mK)2 and t0 = t+−
√
t+(t+ − t−).

The numerical inputs are: mD = 1.87265 GeV, mD∗
s
= 2.1122 GeV, mD∗

s (0
+) = 2.317 GeV,

and mK = 0.495644 GeV.

B.3.2 B → π form factors

BCL parameterization:

f+(q
2) =

1

1− q2/m2
B∗

N+−1∑
n=0

a+n

[
zn − (−1)n−N+ n

N+
zN

]
, (540)

f0(q
2) =

N0−1∑
n=0

a0nz
n . (541)

The kinematical constraint f+(0) = f0(0) is implemented expressing a0N0−1 in terms of the

other coefficients. We use t+ = (mB + mπ)
2 and t0 = (mB + mπ)(

√
mB − √

mπ). The
numerical inputs are: mB∗ = 5.32471 GeV, mB = 5.27934 GeV and mπ = 0.1349768 GeV.

Results for the form factor fT are taken directly from Ref. [42] where we refer the reader
for details on the parameterization.

B.3.3 Bs → K form factors

BCL parameterization:

f+(q
2) =

1

1− q2/m2
B∗

N+−1∑
n=0

a+n

[
zn − (−1)n−N+ n

N+
zN

]
, (542)

f0(q
2) =

1

1− q2/m2
B∗(0+)

N0−1∑
n=0

a0nz
n . (543)
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The kinematical constraint f+(0) = f0(0) is implemented expressing a0N0−1 in terms of the

other coefficients. We use t+ = (mB +mπ)
2, t− = (mBs −mK)2 and t0 = t+−

√
t+(t+ − t−).

The numerical inputs are: mB = 5.27931 GeV, mB∗ = 5.3251 GeV, mBs = 5.36688 GeV,
mB∗(0+) = 5.68 GeV, mK = 0.493677 GeV and mπ = 0.1349766 GeV.

B.3.4 B → K form factors

BCL parameterization:

f+(q
2) =

1

1− q2/m2
B∗

s

N+−1∑
n=0

a+n

[
zn − (−1)n−N+ n

N+
zN

]
, (544)

f0(q
2) =

1

1− q2/m2
B∗

s (0
+)

N0−1∑
n=0

a0nz
n , (545)

fT (q
2) =

1

1− q2/m2
B∗

s

NT−1∑
n=0

aTnz
n . (546)

The kinematical constraint f+(0) = f0(0) is implemented expressing a0N0−1 in terms of the

other coefficients. We use t+ = (mB + mK)2 and t0 = (mB + mK)(
√
mB − √

mK). The
numerical inputs are: mB = 5.27931 GeV, mB∗

s
= 5.4154 GeV, mB∗

s (0
+) = 5.718 GeV and

mK = 0.493677 GeV.

B.3.5 B → D form factors

BCL parameterization:

f+(q
2) =

N+−1∑
n=0

a+n

[
zn − (−1)n−N+ n

N+
zN

]
, (547)

f0(q
2) =

N0−1∑
n=0

a0nz
n . (548)

The kinematical constraint f+(0) = f0(0) is implemented expressing a0N0−1 in terms of the

other coefficients. We use t+ = (mB + mD)
2 and t0 = (mB + mD)(

√
mB − √

mD). The
numerical inputs are: mB = 5.27931 GeV and mD = (1.86483 + 1.86965)/2 GeV.

B.3.6 Bs → Ds form factors

Results for the form factors are taken directly from Table VIII of Ref. [43] where we refer the
reader for details on the parameterization.

B.3.7 B → D∗ form factors

We adopt the BGL parameterization used in Ref. [44]: the form factors are given in Eqs. (63)
and (64), the poles for the Blaschke factors are given in Table 9, the four outer functions in
Eqs. (67)–(70) and the remaining numerical inputs in Table 10. We impose the kinematic
constraints at zero and max recoil (see Eqs.(72) and (73) of Ref. [44]) by eliminating the
coefficients aF1

0 and aF2
0 .
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B.3.8 Bs → D∗
s form factors

We adopt the same BGL parameterization described in Sec. B.3.7. Both the outer functions
and the location of the poles are identical to the B → D∗ case, and the kinematical constraints
are imposed in the same way. The only difference are the masses mBs = 5.36688 GeV and
mD∗

s
= 2.112 GeV.
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[14] M. Göckeler, R. Horsley, E. Laermann, P.E.L. Rakow, G. Schierholz, R. Sommer et al.,
QED: A Lattice Investigation of the Chiral Phase Transition and the Nature of the Con-
tinuum Limit, Nucl. Phys. B334 (1990) 527.

[15] M.G. Endres, A. Shindler, B.C. Tiburzi and A. Walker-Loud, Massive photons: an in-
frared regularization scheme for lattice QCD+QED, Phys. Rev. Lett. 117 (2016) 072002
[1507.08916].

[16] U.J. Wiese, C periodic and G periodic QCD at finite temperature, Nucl. Phys. B 375
(1992) 45.

[17] L. Polley, Boundaries for SU(3)(C) x U(1)-el lattice gauge theory with a chemical poten-
tial, Z. Phys. C 59 (1993) 105.

[18] M.A. Clark, M. Della Morte, Z. Hall, B. Hörz, A. Nicholson, A. Shindler et al., QED
with massive photons for precision physics: zero modes and first result for the hadron
spectrum, PoS LATTICE2021 (2022) 281 [2201.03251].

[19] [RCstar 22] L. Bushnaq, I. Campos, M. Catillo, A. Cotellucci, M. Dale, P. Fritzsch
et al., First results on QCD+QED with C∗ boundary conditions, JHEP 03 (2023) 012
[2209.13183].

[20] [RM123 17] D. Giusti, V. Lubicz, C. Tarantino, G. Martinelli, S. Sanfilippo, S. Simula
et al., Leading isospin-breaking corrections to pion, kaon and charmed-meson masses
with Twisted-Mass fermions, Phys. Rev. D95 (2017) 114504 [1704.06561].
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